The clutter characteristics of terahertz high-resolution radar are essential for terahertz radar detection. This study analyzes the traditional clutter probabilistic model and the corresponding parametric estimation methods. Terahertz high-resolution radar clutter measuring experiments are implemented, and the measured data are analyzed. The experimental results show that G0 distribution is the best technique to describe the clutter characteristics of the terahertz band.
Oliver C J. Optimum texture estimators for SAR clutter[J]. Journal of Physics D, Applied Physics, 1993, 26(11): 1824-1835.
[2]
Li H C, Hong W, Wu Y R, et al.. On the empiricalstatistical modeling of SAR images with generalized gamma distribution[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 386-397.
[3]
Frery A C, Muller H J, Yanasse C C F, et al.. A model for extremely heterogeneous clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 648-659.
[4]
Cui S and Datcu M. Coarse to fine patches-based multitemporal analysis of very high resolution satellite images[C]. Proceeding of 6th International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, Trento, Italy, 2011: 85-88.
[5]
Oliver C J and Quegan S. Understanding Synthetic Aperture Radar Images[M]. Norwood, MA, USA: Artech House, 1998: 128-130.
[6]
Nicolas J M. Introduction to second kind statistics: application of logmoments and log-cumulants to second kind statistics: application of logmoments and log-cumulants to analysis of radar images[J]. Traitement du Signal, 2002, 19(3): 139-167.
[7]
Krylov V and Zerubia J. Generalized gamma mixtures for supervised SAR image classification[C]. Proceedings of GraphiCon 2010, Saint-Pertersburg, Russia, 2010: 107-110.
[8]
Tadjudin S and Landgrebe D A. Robust parameter estimation for mixture model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 439-445.
[9]
Moser G, Zerubia J, and Serpico S B. SAR amplitude probability density function estimation based on a generalized Gaussian model[J]. IEEE Transactions on Image Processing, 2006, 15(6): 1429-1442.
[10]
Szajnowski W. Estimator of log-normal distribution parameters[J]. IEEE Transactions on Aerospace and Electronic Systems, 1977, AES-13(5): 533-536.
[11]
Stacy E W. A generalized of the Gamma distribution[J]. The Annals of Mathematical Statistics, 1962, 33(3): 1187-1192.