A high-resolution real-time subaperture imaing formation for range direction pulse compression airborne strip Synthetic Aperture Radar(SAR) system is presented. It can be used in no dechirp strip SAR system. By pulse compression in range direction and Overlapped Subaperture Algorithm(OSA) in azimuth direction this algorithm can compensate the range-azimuth cross error and the space variant phase error. In this study, first strip SAR geometry is analyzed and the strip SAR model is derived, and then the processing flow of OSA for range pulse compression strip SAR system is described in detail. Computation load, data storage and limitations of patch are analyzed then.The point-target simulations and live data processing results show the proposed approach is feasible and effective.
詹学丽, 王岩飞, 王 超, 刘碧丹. 一种基于脉冲压缩的机载条带SAR重叠子孔径实时成像算法[J]. 雷达学报, 2015, 4(2): 199-208.
Zhan Xue-li, Wang Yan-fei, Wang Chao, Liu Bi-dan. Research on Overlapped Subaperture Real-time Imaing Algorithm for Pulse Compression Airborne Strip SAR System. JOURNAL OF RADARS, 2015, 4(2): 199-208.
Burns B L and Cordaro J T. SAR image formation algorithm that compensates for the spatially variant effects of antenna motion [ J] . Proceedings of SPIE, 1994, 2230( 4):14- 24.
[2]
Burns B L and Cordaro J T. Imaging synthetic aperture radar [P]. United States Patent, 1997, No.5608404.
[3]
Doerry A W. Synthetic aperture radar processing with tiered subapertures[J]. Communications and Radar, 1994,30( 4) : 1125-1129.
[4]
Doerry A W. Synthetic aperture radar processing with polar formatted subapertures[C]. Proceedings of 28th Asilomar Conferrence Signals System Computer, Pacific Grove, CA, 1994:1210-1215.
[5]
Doerry A W. Wavefront curvature limitations and compensation to polar format processing for synthetic aperture radar images[R]. Sandia National Labs, New Mexico, CA, Technical Report, SAND2007-0046, 2007.
[6]
Walker B, Sander G, Thompson M, et al.. A high-resolution, four-band SAR Testbed with real-time image formation[C]. International Geoscience and Remote Sensing Symposium(IGARSS) 1996, Lincoln, NE. 1996(3):1881-1885.
Xie Dong-dong, Yu Wei-dong, Xu Feng, et al.. OSA algorithm for the processing of stripmap SAR data[J]. Systems Engineering and Electronics. 2005, 27(6):1003-1006.
[8]
Tang Yu,Zhang Bo,Xing Meng-dao, et al.. Azimuth overlapped subaperture algorithm in frequency domain for highly squinted synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters,2013,10( 4) 692 -696.
Tang Yu, Xing Meng-dao, Bao Zheng, et al.. Wavefront curvature compensation based on overlapped subaperture polar format algorithm[J]. Acta Electronica Sinica, 2008,36(6):1108-1113.
Mao Xin-hua, Cao Hai-yang, Zhu Dai-yin, et al.. Prior knowledge aided two dimensional autofocus approach for synthetic aperture radar[J]. Acta Electronica Sinica, 2013,41(6):1041-1047.
[11]
Mao Xin-hua, Zhu Dai-yin and Zhu Zhao-da. Polar format algorithm wavefront curvature compensation under arbitrary radar flight path[J]. IEEE Geoscience and Remote Sensing Letters, 2012,9(3):526-530.
[12]
Cumming I G and Wong F H. Digital processing of synthetic aperture radar data[M]. Norwood, MA, Artech House, Inc., 2005: chapter 11.
Tian Xue, Liang Xing-dong, Li Yan-lei, et al.. High-precision motion compensation method based on the subaperture envelope error correction for SAR[J]. Journal of Radars, 2014, 3(4):583-590.