Change Detection of High Resolution SAR Images by the Fusion of Coherent/Incoherent Information
Yang Xiang-li① Xu De-wei① Huang Ping-ping② Yang Wen①
①(School of Electronic Information, Wuhan University, Wuhan 430072, China) ②(Radar Research Institute, Inner Mongolia University of Technology, Hohhot 010051, China)
Aiming at detecting the change regions of high resolution Synthetic Aperture Radar (SAR) images, we propose to use the Dempster-Shafer (D-S) evidence theory to fuse coherent/incoherent features from sensors that form an integral part of the system. First, we use the Simple Linear Iterative Clustering (SLIC) segmentation algorithm to implement multi-scale joint segmentation for multi-temporal SAR images. Second, we extract multiple intensity and coherence difference features on each segment level by SLIC using mean operator to complete the fusion of multi-scale features to get the multi-feature difference mapped by a ratio operator. Finally, we fuse the multi-feature difference maps to get the final change detection result using the D-S evidence theory. The experimental results in our study prove the effectiveness of our proposed computational algorithm.
杨祥立, 徐德伟, 黄平平, 杨 文. 融合相干/非相干信息的高分辨率SAR图像变化检测[J]. 雷达学报, 2015, 4(5): 582-590.
Yang Xiang-li, Xu De-wei, Huang Ping-ping, Yang Wen. Change Detection of High Resolution SAR Images by the Fusion of Coherent/Incoherent Information. JOURNAL OF RADARS, 2015, 4(5): 582-590.
李春升, 杨威, 王鹏波. 星载SAR成像处理算法综述[J]. 雷达学报, 2013, 2(1): 111-122.Li Chun-sheng, Yang Wei, and Wang Peng-bo. A review of spaceborne SAR algorithm for image formation[J]. Journal of Radars, 2013, 2(1): 111-122.
[2]
Evans T L and Costa M. Landcover classification of the lower nhecolandia subregion of the brazilian pantanal wetlands using ALOS/PALSAR, RADARSAT-2 and ENVISAT/ASAR imagery[J]. Remote Sensing of Environment, 2013, 128: 118-137.
[3]
田维, 徐旭, 卞小林, 等. 环境一号C卫星SAR图像典型环境遥感应用初探[J]. 雷达学报, 2014, 3(3): 339-351.Tian Wei, Xu Xu, Bian Xiao-lin, et al.. Applications of environmental remote sensing by HJ-1C SAR imagery[J]. Journal of Radars, 2014, 3(3): 339-351.
[4]
尤红建, 付琨. 合成孔径雷达图像精准处理[M]. 北京: 科学出版社, 2011: 1-27.
[5]
Refice A, Capolongo D, Lepera A, et al.. SAR and InSAR for flood monitoring: examples with COSMO/SkyMed data[C]. IEEE Geoscience and Remote Sensing Symposium, Melbourne, VIC, 2013: 703-706.
[6]
Federica B, Luigi T, Claudio P, et al.. Shoreline detection: capability of COSMO-SkyMed and high-resolution multispectral images[J]. European Journal of Remote Sensing, 2013, 46: 837-853.
[7]
浮瑶瑶, 柳彬, 张增辉, 等. 基于词包模型的高分辨率SAR图像变化检测与分析[J]. 雷达学报, 2014, 3(1): 101-110.Fu Yao-yao, Liu Bin, Zhang Zeng-hui, et al.. Change detection and analysis of high resolution synthetic aperture radar images based on bag-of-words model[J]. Journal of Radars, 2014, 3(1): 101-110.
Liao M, Jiang L, Lin H, et al.. Urban change detection based on coherence and intensity characteristics of SAR imagery[J]. Photogrammetric Engineering & Remote Sensing, 2008, 74(8): 999-1006.
[10]
Gong M, Li Y, Jiao L, et al.. SAR change detection based on intensity and texture changes[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 93(7): 123-135.
[11]
Dierking W and Skriver H. Change detection for thematic mapping by means of airborne multitemporal polarimetric SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(3): 618-636.
[12]
Lefort A, Grippa M, Walker N, et al.. Change detection across the Nasca pampa using spaceborne SAR interferometry[J]. International Journal of Remote Sensing, 2004, 25(10): 1799-1803.
[13]
Bazi Y, Bruzzone L, and Melgani F. An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 874-887.
[14]
Achanta R, Shaji A, Smith K, et al.. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34(11): 2274-2282.
[15]
Dekker R J. Texture analysis and classification of ERS SAR images for map updating of urban areas in The Netherlands[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9): 1950-1958.
[16]
Su X, Deledalle C A, Tupin F, et al.. SAR image change detection by likelihood ratio test in multi-temporal time series[C]. IEEE International Geoscience and Remote Sensing Symposium, Melbourne, VIC, 2013: 3439-3442.
[17]
Bazi Y, Bruzzone L, and Melgani F. Automatic identification of the number and values of decision thresholds in the log-tatio image for change detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3): 349-353.
[18]
Smarandache F and Dezert J. Advances and Applications of DSmT for Information Fusion[M]. New Mexico: American Research Press, 2004: 3-31.
[19]
Golino G, Graziano A, Farina A, et al.. Comparison of identity fusion algorithms using estimations of confusion matrices[C]. IEEE 17th International Conference on Information Fusion, 2014: 1-7.
[20]
Kittler J. Minimum error thresholding[J]. Pattern Recognition, 1986, 19(1): 41-47.
[21]
Kuttikkad S and Chellappa R. Non-Gaussian CFAR techniques for target detection in high resolution SAR images[C]. IEEE International Conference on Image Processing, 1994, 1: 910-914.
[22]
Delon J, Desolneux A, Lisani J L, et al.. A nonparametric approach for histogram segmentation[J]. IEEE Transactions on Image Processing, 2007, 16(1): 253-261.
[23]
2012 IEEE GRSS Data Fusion Contest. Online:http://www.grss-ieee.org/community/technical-committees/data-fusion.