Orthogonal Frequency Division Multiplexing (OFDM) technology has been utilized in radar imaging to obtain high-resolution range profiles without inter-range cell interference. In this study, we establish a novel algorithm for Inverse Synthetic Aperture Radar (ISAR) imaging of a non-cooperative target using OFDM waveforms. We also achieve motion compensation and image enhancement with sparse reconstruction optimization. Utilizing sparse reconstruction optimization, we can simultaneously achieve high-precision OFDM-ISAR imaging and also correct phase errors. Extensive experimentation confirms that the proposed method can effectively overcome range interference and phase errors in OFDM-ISAR imaging, providing optimal robustness and precision.
Soumekh M. Synthetic Aperture Radar Signal Processing[M]. NewYork, NY, USA: Wiley, 1999.
[2]
Axelsson S R J. Analysis of random step frequency radar and comparison with experiments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(4): 890-904.
[3]
Riche V, Meric S, Baudais J, et al.. Optimization of OFDM SAR signals for range ambiguity suppression[C]. 2012 9th European Radar Conference (EuRAD), Amsterdam, 2012: 278-281.
[4]
Kim J H, Younis M, Moreira A, et al.. A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 568-572.
[5]
Garmatyuk D and Brenneman M. Adaptivemulticarrier OFDM SAR signal processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3780-3790.
[6]
Zhang T and Xia X G. OFDM synthetic aperture radar imaging with sufficient cyclic prefix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 394-404.
[7]
Zhang T, Xia X G, and Kong L. IRCI free range reconstruction for SAR imaging with arbitrary length OFDM pulse[J]. IEEE Transactions on Signal Processing, 2014, 62(18): 4748-4759.
[8]
Chen C C and Andrews H C. Target-motion-induced radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, 16(1): 2-14.
[9]
Wang J and Kasilingam D. Global range alignment for ISAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(1): 351-357.
[10]
Donoho D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[11]
吴敏, 邢孟道, 张磊. 基于压缩感知的二维联合超分辨ISAR成像算法[J]. 电子与信息学报, 2014, 36(1): 187-193. Wu Min, Xing Meng-dao, and Zhang Lei. Two dimensional joint super-resolution ISAR imaging algorithm based on compressive sensing[J]. Journal of Electronics & Information Technology, 2014, 36(1): 187-193.
[12]
Du X, Duan C, and Hu W. Sparse representation based autofocusing technique for ISAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1826-1835.
[13]
Zhao L, Wang L, Bi G, et al.. An autofocus technique for high-resolution inverse synthetic aperture radarimagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6392-6403.
[14]
Rao W, Li G, Wang X, et al.. Parametric sparse representation method for ISAR imaging of rotating targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 910-919.
[15]
Baraniuk R and Steeghs P. Compressive radar imaging[C]. 2007 IEEE Radar Conference, Boston, MA, 2007: 128-133.
[16]
Duarte M F and Baraniuk R G. Kronecker compressive sensing[J]. IEEE Transactions on Image Processing, 2012, 21(2): 494-504.
[17]
Axelsson O. Iterative Solution Methods[M]. Cambridge, U.K.: Cambridge University Press, 1994.