Polarization Hierarchy and System Operating Architecture for Polarimetric Synthetic Aperture Radar
Yang Ruliang*① Dai Bowei② Li Haiying③
①(Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China) ②(Chinese Academy of Sciences, Beijing 100864, China) ③(Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China)
Polarization hierarchy and system operating architecture is one of the key technologies for Polarimetric Synthetic Aperture Radar (PolSAR) system design. In this paper the polarization hierarchies of PolSAR, including Single-Polarization radar, Dual-Polarization radar, Full-Polarization radar, and Compact Polarization radar, are discussed. In addition, the system operating architectures such as Polarization Timedivision multiplexing pulse, Polarization Frequency-division multiplexing pulse, Polarization Code-division multiplexing pulse and Polarization Space-division in Azimuth are presented more in detail.
杨汝良, 戴博伟, 李海英. 极化合成孔径雷达极化层次和系统工作方式[J]. 雷达学报, 2016, 5(2): 132-142.
Yang Ruliang, Dai Bowei, Li Haiying. Polarization Hierarchy and System Operating Architecture for Polarimetric Synthetic Aperture Radar. JOURNAL OF RADARS, 2016, 5(2): 132-142.
Kostinski A B and Boerner W M. On foundation of radar polarimetry[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(12): 1395-1403.
[2]
Cloude S R and Pottier E. An entropy based classification scheme for land application of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68-78.
[3]
Dong Y, Milne A K, and Forster B C. Segmentation and classification of vegetated areas using polarimetric SAR image data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2): 321-329.
[4]
Freeman A. Fitting a two-component scattering model to polarimetric SAR data from forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(8): 2583-2592.
[5]
Mattia F, Floury N, and Moreira A. Foreword to the special issue on retrieval of bio-and geophysical parameters from SAR data for land applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 379-380. DOI: 10.1109/TGRS.2009.2012837.
[6]
Ulaby F T and Elachi Charles. Radar Polarimetry for Geoscience Applications[M]. Artech House Inc, Boston, London, 1990: 281-295.
[7]
Oh Y, Sarabandi K, and Ulaby F T. An inversion algorithm for retrieving soil moisture and surface roughness from polarimetric radar observation[C]. IEEE Geoscience and Remote Sensing Symposium, Pasadena, 1994, 3: 1582-1584. DOI: 10.1109/IGARSS.1994.399504.
[8]
Dierking W and Wesche C. C-band radar polarimetry— useful for detection of icebergs in sea ice?[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 25-37.
[9]
He Yijun, Perrie W, and Xie Tao, et al.. Ocean wave spectra from a linear polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11): 2623-2631.
[10]
Zhang B, Perrie W, and Vachon P W, et al.. Ocean vector winds retrieval from C-band fully polarimetric SAR measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4252-4261.
[11]
Novak L M, Sechtin M B, and Cardullo M J. Studies of target detection algorithms that use polarimetric radar data[J]. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(2): 150-165.
[12]
Monaldo F. SEASAT sees the winds with SAR[C]. IEEE International Geoscience and Remote Sensing Symposium, 2003, 1: 38-40. DOI: 10.1109/IGARSS.2003.1293671.
[13]
Monaldo F M, Jackson C R, and Pichel W G. Seasat to RADARSAT-2: research to operations[J]. Oceanography, 2013, 26(2): 34-45.
[14]
Desnos Y L, Buck C, Guijarro J, et al.. The envisat advance synthetic aperture radar system[C]. IEEE International Geoscience and Remote Sensing Symposium, 2000, 3: 1171-1173. DOI: 10.1109/IGARSS.2000.858057.
[15]
Hawkins R K, Touzi R, Wolfe J, et al.. ASAR AP mode performance and applications potential[C]. IEEE International Geoscience and Remote Sensing Symposium, 2003, 2: 1115-1117. DOI: 10.1109/IGARSS.2003.1294029.
[16]
Freeman A, Alves M, Chapman B, et al.. SIR-C data quality and calibration results[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 848-857. DOI: 10.1109/36.406671.
[17]
Jordan R L, Huneycutt B L, and Werner M. The SIR-C\X-SAR synthentic aperture radar system[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 829-839. DOI: 10.1109/36.406669
[18]
Fox Peter A, Luscombe Anthony P, and Thompson Alan A. Radarsat-2 SAR modes development and utilization[J]. Canadian Journal of Remote Sensing, 2004, 30(3): 258-264.
[19]
Fujimra T and Kimura T. Compact polarimetric observation using phased array antenna and its case study for PALSAR[C]. EUSAR, 2008: 1-4.
[20]
Mittermayer J and Runge H. Conceptual studies for exploiting the TerraSAR-X dual receive antenna[C]. IEEE International Geoscience and Remote Sensing Symposium, 2003, 3: 2140-2142. DOI: 10.1109/IGARSS.2003.1294365.
[21]
Stangl M, Werninghaus R, and Zahn R. The TerraSAR-X active phased array antenna[C]. IEEE International Symposium on Phased Array Systems and Technology, 2003: 70-75. DOI: 10.1109/PAST.2003.1256959.
[22]
ME Nord, Ainsworth T L, Lee J S, et al.. Comparison of compact polarimetric synthetic aperture radar modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1): 174-188.
[23]
Spudis P, Nozette S, Bussey B, et al.. Mini-SAR: an imaging radar experiment for the Chandrayaan-1 mission to the Moon[J]. Current Science, 2009, 96(4): 533-539.
[24]
Raney R K, Spudis P D, Bussey B, et al.. The lunar mini-RF radars: hybrid polarimetric architecture and initial results[J]. Proceedings of the IEEE, 2010, 99(5): 808-823.
[25]
Misra Tapan, Rana S S, Bora V H, et al.. SAR Payload of Radar Imaging Satellite (RISAT) of ISRO[C]. EUSAR, 2006: 1-4.
[26]
Geldsetzer T, Arkett M, and Zagon T. All season assessment of RADARSAT constellation mission compact polarimetry modes for canadian ICE service operational implementation[C]. 2014 IEEE International Geoscience and Remote Sensing Symposium, Quebec City, 2014: 1560-1563. DOI: 10.1109/IGARSS.2014.6946737.
[27]
Souyris J C and Mingot S. Polarimetry based on one transmitting and two receiving polarizations: the π/4 mode[C]. IEEE International Geoscience and Remote Sensing Symposium, 2002, 1: 629-631. DOI: 10.1109/IGARSS.2002.1025127.
[28]
Souyris J C, Imbo P, Fjortoft R, et al.. Compact polarimetry based onsymmetry properties of geophysical media: the π/4 mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 634-646. DOI: 10.1109/TGRS.2004.842486.
[29]
Raney R K. Hybrid-polarity SAR architecture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3397-3404. DOI: 10.1109/TGRS.2007.895883.
[30]
Raney R K. Hybrid-quad-pol SAR[C]. IEEE Geoscience and Remote Sensing Symposium, 2008, 4: 491-493. DOI: 10.1109/IGARSS.2008.4779765.
[31]
戴博伟. 多极化合成孔径雷达系统与极化信息处理研究[D]. [博士论文], 中国科学院电子研究所, 2000. Dai Bowei. The research of polarimetric SAR system and polarimetric information processing[D]. [Ph.D. dissertation], Institute of Electronics, Chinese Academy of Sciences, 2000.
[32]
Raney R K. Dual-polarized SAR and Stokes parameters[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3): 317-319.
[33]
COSMO-SkyMed System Description & User Guide[R]. 4 May, 2007.
[34]
COSMO-SkyMed System HandBook[R]. 30 April, 2007.
[35]
Shirvany R, Chabert M, and Tourneret J Y. Comarision of ship detection on performance based on the degree of polarization in hybrid/compact and linear dual-pol SAR imagery[C]. IEEE International Geoscience and Remote Sensing Symposium, Vancouver, 2011: 3550-3553. DOI: 10.1109/IGARSS.2011.6049988.
[36]
Lardeux C, Niamen D, Routier J B, et al.. Use of PALSAR polarimetric data for tropical forest stratification and comparison of simulated dual and compact polarimetric modes[C]. IEEE International Geoscience and Remote Sensing Symposium, Honolulu, 2010: 1855-1858. DOI: 10.1109/IGARSS.2010.5650441.
[37]
Singh G, Yamaguchi Y, Park Sang-Eun, et al.. Categorization of the glaciated terrain of indian himalaya using CP and FP mode SAR[J]. IEEE Journal of Earth Observations and Remote Sensing, 2014, 7(3): 872-880. DOI: 10.1109/JSTARS.2013.2266354.
[38]
Yin Junjun, Yang Jian, Zhou Zheng-Shu, et al.. The extended bragg scattering model-based method for ship and oil-spill observation using compact polarimetric SAR[J]. IEEE Journal of Earth Observations and Remote Sensing, 2015, 8(8): 3760-3772. DOI: 10.1109/JSTARS.2014.2359141.