Analysis of Crosstalk Impact on the Cloude-decomposition-based Scattering Characteristic
Hu Dingsheng①②③ Qiu Xiaolan①②* Lei Bin①② Xu Feng④⑤
①(Institute of Electronics, Chinese Academy of Science, Beijing 100190, China) ②(Key Laboratory of Technology in Geo-spatial Information Processing and Application System, Beijing 100190, China) ③(University of Chinese Academy of Science, Beijing 100049, China) ④(National Disaster Reduction Center of China, MCA, Beijing 100124, China) ⑤(Satellite Disaster Reduction Application Center, MCA, Beijing 100124, China)
Crosstalk is not only one of the main error sources in the polarimetric SAR system, but is also an indicator for evaluating calibration performance. In this paper, to determine the impact of crosstalk on land cover classification, we first retrieve the mathematical relation expressions between crosstalk and the Cloude-decomposition-based scattering characteristic. Then, we verify our theoretical conclusions in a semi-physical simulation based on Radarsat-2 polarimetric data for different land covers. Finally, we perform H/α/Wishart classification on the experimental data. From the ratio curve of pixels labeled differently under changing crosstalk, we can determine the crosstalk requirement that will meet the needs of specific applications.
Akbari V, Anfinsen S, Doulgeris A, et al.. Polarimetric SAR change detection with the complex Hotelling-Lawley trace statistic[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 3953-3966.
[2]
Doulgeris A. An automatic U-distribution and Markov Random Field segmentation algorithm for PolSAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 1819-1827.
[3]
Tao D, Doulgeris A, and BrekkeC. A segmentation-based CFAR detection algorithm using truncated statistics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 2887-2898.
[4]
Whitt M, Ulaby F, Polatin P, et al.. A general polarimetric radar calibration technique[J]. IEEE Transactions on Antennas and Propagation, 1991, 39(1): 62-67.
[5]
Freeman A. SAR calibration: An overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(6): 1107-1121.
[6]
Quegan S. A unified algorithm for phase and cross-talk calibration of polarimetric data-theory and observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(1): 89-99.
[7]
Sarabandi K, Pierce L, Dobson M, et al.. Polarimetric calibration of SIR-C using point and distributed target[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 858-866.
[8]
Freeman A. Calibration of linearly polarized polarimetric SAR data subject to Faraday rotation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1617-1624.
[9]
Sabry R, Vachon P, and Cole M. Prediction of polarimetric-SAR field-orientation rotation due to topographical slope variation for squint operations[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 570-574.
[10]
Hu Dingsheng, Qiu Xiaolan, Hu Donghui, et al.. Improved airborne PolSAR calibration algorithm based on time-variant attitude compensation[J]. International Journal of Remote Sensing, 2015, 36(12): 3184-3195.
[11]
Touzi R, Hawkins R, and Cote S. High-precision assessment and calibration of polarimetric RADARSAT-2 SAR using transponder measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 487-503.
[12]
Azcueta M, d'Alessandro M, Zajc T, et al.. ALOS-2 preliminary calibration assessment[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 2015: 4117-4120.
[13]
Geudtner D, Torres R, Snoeij P, et al.. Sentinel-1 mission capabilities and SAR system calibration[C]. IEEE Radar Conference (RadarCon13), Ottawa, Canada, 2013: 1-4.
[14]
Lee J, Grunes M, Ainsworth T, et al.. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2249-2258.
[15]
Benz U and Pottier E. Object based analysis of polarimetric SAR data in alpha-entropy-anisotropy decomposition using fuzzy classification by eCognition[C]. International Geoscience and Remote Sensing Symposium, Sydney, Austrilia, 2001, 3: 1427-1429.
[16]
Cao F, Hong W, Wu Y, et al.. An unsupervised segmentation with an adaptive number of clusters using the Span/H/alpha/A space and the complex Wishart clustering for fully polarimetric SAR data analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3454-3467.
[17]
Yu P, Qin A, and Clausi D. Unsupervised polarimetric SAR image segmentation and classification using region growing with edge penalty[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4): 1302-1317.
[18]
Dabboor M, Collins M, Karathanassi V, et al.. An unsupervised classification approach for polarimetric SAR data based on the Chernoff distance for complex Wishart distribution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7): 4200-4213.
[19]
Correia A, Freitas C, and Mura J. Evaluation of the influence of the polarimetric calibration process on the H/A/alpha decomposition[C]. IEEE International Geoscience and Remote Sensing Symposium, Honolulu, Hawaii, USA, 2010: 2039-2042.
[20]
Wang Y, Ainsworth T, and Lee J. Assessment of system polarization quality for polarimetric SAR imagery and target decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1755-1771.
[21]
Wang C, Yu W, Wang Y, et al.. Polarimetric calibration requirements on several classification schemes for land application of polarimetric synthetic aperture radar[J]. IET Radar, Sonar & Navigation, 2013, 7(2): 113-122.
[22]
Lee J and Potter E. Polarimetric Radar Imaging From Basic to Application[M]. New York: CSC Press, 2009: 53-84.
[23]
Cloude S and Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498-518.