Mechanism Study of Ionospheric Effects on Medium-Earth-Orbit SAR
Li Liang①,②* Hong Jun①,② Ming Feng①,②
①(Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China) ②(Sciences and Technology on Microwave Imaging Laboratory, Beijing 100190, China)
Abstract:The Medium-Earth-Orbit SAR (MEOSAR) is one of the potential spaceborne SAR of next-generation owing to its excellent performance. Ionospheric effects analysis is one of the critical techniques for the development of MEOSAR. The spatio-temporal variability of the ionosphere is analyzed using the measured ionosphere data. The factors and the mechanism of ionospheric effects on MEOSAR are studied based on the spatio-temporal variability of the ionosphere and the characteristics of MEOSAR such as long synthetic aperture time, wide swath, and high orbit. The results reveal that there are many differences in the ionospheric effects between MEOSAR and LEOSAR.
李 亮, 洪 峻, 明 峰. 电离层对中高轨SAR影响机理研究[J]. 雷达学报, 2017, 6(6): 619-629.
Li Liang, Hong Jun, Ming Feng. Mechanism Study of Ionospheric Effects on Medium-Earth-Orbit SAR. JOURNAL OF RADARS, 2017, 6(6): 619-629.
Hu Wenlong. Impact of earth's oblateness perturbations on geosynchronous SAR data focusing[J]. Journal of Radars, 2016, 5(3): 312-319. DOI:10.12000/JR15121.
Hong Wen, Lin Yun, Tan Wei-xian, et al.. Study on geosynchronous circular SAR[J]. Journal of Radars, 2015, 4(3): 241-253. DOI:10.12000/JR15062.
[3]
Li Z., Quegan S., Chen J, and Rogers N. C. Performance analysis of phase gradient autofocus for compensating ionospheric phase scintillation in BIOMASS P-band SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6): 1367-1371. DOI:10.1109/LGRS.2015.2402833.
[4]
Tsynkov S V. On SAR imaging through the Earth's ionosphere[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 140-182. DOI:10.1137/080721509.
[5]
Xu Z W, Wu J and Wu Z S. A survey of ionospheric effects on space-based radar[J]. Waves in Random Media, 2004, 14(2): S189-S273. DOI:10.1088/0959-7174/14/2/008.
[6]
空间环境预报中心[EB/OL]. www.sepc.ac.cn.
[7]
Papathanassiou K, Kim J S, Quegan S, et al.. Study of ionospheric mitigation schemes and their consequences for BIOMASS product quality[R]. University of Sheffield, ESA/ESTEC Contract No. 22849/09/NL/JA/ef. European Space Agency, 2012.
[8]
Vo H B and Foster J C. A quantitative study of ionospheric density gradients at midlatitudes[J]. Journal of Geophysical Research, 2001, 106(A10): 21555-21563. DOI:10.1029/2000JA000397.
Huang Wen-geng, Chen Yan-hong, Shen Hua, et al.. Study of ionospheric TEC horizontal gradient by means of GPS observations[J]. Chinese Journal of Space Science, 2009, 29(2): 183-187. DOI:10.11728/cjss2009.02.183.
Zheng Hu. The imaging of ionospheric irregularities based on spaceborne p-band SAR and EM contrast source inversion method with phaseless data[D]. [Ph.D. dissertation], Institue of Electronics, Chinese Academy of Sciences, 2008.
Yang Yunlong, Mao Xingpeng, Dong Yingning, et al.. Space-polarization collaborative suppression method for ionospheric clutter in HFSWR[J]. Journal of Radars, 2016, 5(6): 673-680. DOI:10.12000/JR16024.
[12]
Yeh K and Yang C. Mean arrival time and mean pulsewidth of signals propagating through a dispersive and random medium[J]. IEEE Transactions on Antennas and Propagation, 1977, 25(5): 710-713. DOI:10.1109/TAP.1977.1141671.
Li Liang, Hong Jun, Ming Feng, et al.. Study on ionospheric effects induced by spatio-temporal variability on medium-earth-orbit SAR imaging quality[J]. Journal of Electronics & Information Technology, 2014, 36(4): 915-922. DOI:10.3724/SP.J.1146.2013.00859.
[14]
Belcher D P. Sidelobe prediction in transionospheric SAR imaging radar from the ionospheric turbulence strength CkL[C]. Proceedings of 2008 International Conference on Radar, Adelaide, SA, 2008: 54-59.