Abstract:This study presents a novel processing scheme for Multiple-Input Multiple-Output (MIMO) Synthetic Aperture Radar (SAR) system with Short-Term Shift-Orthogonal (STSO) chirp waveforms to enhance its high-resolution wide-swath mapping capability. Taking advantage of multi-beam digital beamforming techniques in elevation, the STSO chirp waveforms can be efficiently separated from mixed echo signals. According to the geometry model and the antenna architecture of MIMO SAR system, the modified multichannel reconstruction matrix is used to reconstruct the separated signals in azimuth. In addition, the reconstruction data can be imaged via conventional SAR algorithm. Simulation experiments are conducted on both point targets and distributed targets, the results of which indicate that the proposed scheme can effectively suppress the mutual interferences between the STSO waveforms and that it has good imaging performance.
叶 恺, 禹卫东, 王 伟. 一种基于短偏移正交波形的MIMO SAR处理方案研究[J]. 雷达学报, 2017, 6(4): 376-387.
Ye Kai, Yu Weidong, Wang Wei. Investigation on Processing Scheme for MIMO SAR with STSO Chirp Waveforms. JOURNAL OF RADARS, 2017, 6(4): 376-387.
Cumming I G and Wong F H. Digital Processing of Synth-etic Aperture Radar Data: Algorithms and Implemen-tation[M]. Norwood, MA: Artech House, 2005: 3-15.
[2]
Freeman A, Johnson W T K, Huneycutt B, et al.. The “Myth” of the minimum SAR antenna area constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 320-324. DOI: 10.1109/36.823926. DOI:10.1109/36.823926
[3]
Suess M, Grafmueller B, Zahn R, et al.. A novel high resolution, wide swath SAR system[C]. Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, 2001, 3: 1013-1015. DOI: 10.1109/IGARSS.2001.976731. DOI:10.1109/IGARSS.2001.976731
[4]
Gebert N, Krieger G, and Moreira A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution and wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564-592. DOI: 10.1109/TAES.2009.5089542. DOI:10.1109/TAES.2009.5089542
[5]
Huber S, Villano M, Younis M, et al.. Tandem-L: Design concepts for a next-generation spaceborne SAR system[C]. Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, 2016: 1237-1241.
[6]
Krieger G, Gebert N, and Moreira A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31-46. DOI: 10.1109/TGRS.2007.905974. DOI:10.1109/TGRS.2007.905974
[7]
Wang Wen-qin. Space-time coding MIMO-OFDM SAR for high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3094-3104. DOI: 10.1109/TGRS.2011.2116030. DOI:10.1109/TGRS.2011.2116030
[8]
Wang Wen-qin. MIMO SAR imaging: Potential and challenges[J]. IEEE Aerospace and Electronic Systems Magazine, 2013, 28(8): 18-23. DOI: 10.1109/MAES.2013.6575407. DOI:10.1109/MAES.2013.6575407
[9]
Krieger G, Rommel T, and Moreira A. MIMO-SAR tomography[C]. Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, 2016: 91-96.
[10]
Ender J and Klare J. System architectures and algorithms for radar imaging by MIMO-SAR[C]. Proceedings of 2009 IEEE Radar Conference, Pasadena, 2009: 1-6. DOI: 10.1109/RADAR.2009.4976997. DOI:10.1109/RADAR.2009.4976997
[11]
Kim J H, Younis M, Moreira A, et al.. Spaceborne MIMO synthetic aperture radar for multimodal operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2453-2466. DOI: 10.1109/TGRS.2014.2360148. DOI:10.1109/TGRS.2014.2360148
[12]
Krieger G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628-2645. DOI:10.1109/TGRS.2013.2263934 DOI:10.1109/TGRS.2013.2263934
[13]
Kim J H, Younis M, Moreira A, et al.. A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 568-572. DOI: 10.1109/LGRS.2012.2213577 DOI:10.1109/LGRS.2012.2213577
[14]
Wang Jie, Chen Long-yong, Liang Xing-dong, et al.. Implementation of the OFDM chirp waveform on MIMO SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 5218-5228. DOI: 10.1109/TGRS.2015.2419271 DOI:10.1109/TGRS.2015.2419271
[15]
Wang Jie, Liang Xing-dong, Chen Long-yong, et al.. A novel space-time coding scheme used for MIMO-SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1556-1560. DOI: 10.1109/TGRS.2011.2116030. DOI:10.1109/TGRS.2011.2116030
[16]
He Feng, Dong Zhen, and Liang Dian-nong. A novel space-time coding alamouti waveform scheme for MIMO-SAR implementation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2): 229-233. DOI: 10.1109/LGRS.2015.2412961. DOI:10.1109/LGRS.2015.2412961
[17]
Van Trees H L. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory[M]. New York: John Wiley & Sons, 2002.
[18]
Krieger G, Gebert N, and Moreira A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260-264. DOI: 10.1109/LGRS.2004.832700. DOI:10.1109/LGRS.2004.832700