Abstract:Phased array radar can simultaneously form multiple beams that can scan without inertia allowing for flexible pointing. In this paper, we propose a joint beam and dwell time allocation strategy for multi-target tracking in a phased array radar system to achieve multi-target tracking with less system resources. First, we formulate an optimization problem for minimizing the total dwell time on all targets while guaranteeing to meet a predetermined target-tracking accuracy requirement. The Bayesian Cramer-Rao Lower Bound (BCRLB) is introduced as the tracking performance metric since it provides a lower bound for the error of target state estimate. Second, after proving the optimization problem is nonconvex, we propose a two-step decomposition algorithm which is first to determine the beam pointing and then allocate the beam dwell time to solve it. Finally, we achieve multi-target tracking based on the resource allocation results. Simulation results show that our optimization strategy is effective in saving resources and is favorable for achieving a better tracking performance of worse targets as compared to an operating mode wherein uniform resource allocation occurs.
王祥丽, 易 伟, 孔令讲. 基于多目标跟踪的相控阵雷达波束和驻留时间联合分配方法[J]. 雷达学报, 2017, 6(6): 602-610.
Wang Xiangli, Yi Wei, Kong Lingjiang. Joint Beam Selection and Dwell Time Allocation for Multi-target Tracking in Phased Array Radar System. JOURNAL OF RADARS, 2017, 6(6): 602-610.
Izquierdo-Fuente A and Casar-Corredera J R. Optimal radar pulse scheduling using a neural network[C]. Proceedings of 1994 IEEE International Conference on Neural Networks, Orlando, Florida, USA, 1994, 7: 4588-4591.
[2]
Kirubarajan T, Bar-Shalom Y, and Daeipour E. Adaptive beam pointing control of a phased array radar in the presence of ECM and false alarms using IMMPDAF[C]. Proceedings of the 1995 American Control Conference, Seattle, WA, USA, 1995, 4: 2616-2620.
[3]
Daeipour E, Bar-Shalom Y, and Li X. Adaptive beam pointing control of a phased array radar using an IMM estimator[C]. Proceedings of 1994 American Control Conference, Baltimore, MD, USA, 1994, 2: 2093-2097.
He You, Xiu Jian-juan, Guan Xin, et al.. Radar Data Processing with Applications[M]. Third edition, Beijing: Publishing House of Electronics Industry, 2013: 308-313.
[5]
Zwaga J H and Driessen H. Tracking performance constrained MFR parameter control: Applying constraints on prediction accuracy[C]. Proceedings of the 8th International Conference on Information Fusion, Philadelphia, Pennsylvania, USA, 2005: 1-6.
[6]
Narykov A S, Krasnov O A, and Yarovoy A. Algorithm for resource management of multiple phased array radars for target tracking[C]. Proceedings of the 16th International Conference on Information Fusion, Istanbul, Turkey, 2013: 1258-1264.
[7]
Shi Chen-guang, Wang Fei, Zhou Jian-jiang, et al.. Resource management for target tracking in distributed radar network system[C]. Proceedings of 2015 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Ningbo, China, 2015: 1-5.
[8]
Lu Jian-bin, Hu Wei-dong, and Yu Wen-xian. Adaptive beam scheduling algorithm for an agile beam radar in multi-target tracking[C]. Proceedings of 2006 IEEE International Conference on Radar, Shanghai, China, 2006: 1-4.
Lu Yanxi, He Zishu, Cheng Ziyang, et al.. Joint selection of transmitters and receivers in distributed multi-input multi-output radar network for multiple targets tracking[J]. Journal of Radars, 2017, 6(1): 73-80. DOI:10.12000/JR16106.
[10]
Yan Junkun, Liu Hongwei, Jiu Bo, et al.. Simultaneous multibeam resource allocation scheme for multiple target tracking[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3110-3122. DOI:10.1109/TSP.2015.2417504.
[11]
Yan Junkun, Liu Hongwei, Pu Wenqiang, et al.. Joint beam selection and power allocation for multiple target tracking in netted colocated MIMO radar system[J]. IEEE Transactions on Signal Processing, 2016, 64(24): 6417-6427. DOI:10.1109/TSP.2016.2607147.
[12]
Richards M A. Fundamentals of Radar Signal Processing[M]. New York: McGraw-Hill Education, 2005.
Ding Lu-fei and Geng Fu-lu. Radar Principles[M]. Xi'an: Publishing House of Xidian University, 2006: 291-299.
[14]
Van Trees H L. Detection, Estimation, and Modulation Theory, Part Ⅲ: Radar-Sonar Signal Processing and Gaussian Signals in Noise[M]. New York: Wiley, 1971.
[15]
Van Trees H L. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory[M]. New York: Wiley, 2002.
[16]
Tichavsky P, Muravchik C H, and Nehorai A. Posterior Cramér-Rao bounds for discrete-time nonlinear filtering[J]. IEEE Transactions on Signal Processing, 1998, 46(5): 1386-1396. DOI:10.1109/78.668800.
[17]
Godrich H, Chiriac V M, Haimovich A M, et al.. Target tracking in MIMO radar systems: Techniques and performance analysis[C]. Proceedings of 2010 IEEE Radar Conference, Washington, DC, USA, 2010: 1111-1116.
[18]
Zuo Long, Niu Rui-xin, and Varshney P K. Conditional posterior Cramér-Rao lower bounds for nonlinear sequential Bayesian estimation[J]. IEEE Transactions on Signal Processing, 2011, 59(1): 1-14. DOI:10.1109/TSP.2010.2080268.
[19]
Hernandez M L, Farina A, and Ristic B. PCRLB for tracking in cluttered environments: Measurement sequence conditioning approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(2): 680-704. DOI:10.1109/TAES.2006.1642582.
[20]
Boyd S and Vandenberghe L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
[21]
Grant M, Boyd S, and Ye Y. CVX: Matlab software for disciplined convex programming[Z]. 2008.
[22]
Gustafsson F. Particle filter theory and practice with positioning applications[J]. IEEE Aerospace and Electronic Systems Magazine, 2010, 25(7): 53-82. DOI:10.1109/MAES.2010.5546308.
[23]
Arulampalam M S, Maskell S, Gordon N, et al.. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188. DOI:10.1109/78.978374