Abstract:The terahertz scattering characteristics of metallic and dielectric rough targets is important for the investigation of the terahertz radar targets properties. According to the stationary phase theory and scalar approximation, if the radius of curvature at any point of the surface is much larger than the incident wavelength, and the wavelength is also much longer than the surface height function and Root-Mean-Square (RMS) surface slope, the coherent and incoherent scattering Radar Cross Section (RCS) of rough metallic and dielectric targets can be obtained. Based on the stationary phase approximation, the coherent RCS of rough conductors, smooth dielectric targets and rough dielectric targets can be easily deputed. The scattering characteristics of electrically large smooth Al and painted spheres are investigated in this paper, and the calculated RCS are verified by Mie scattering theory, the error is less than 0.1 dBm2. Based on lambert theory, it is demonstrated that the incoherent RCS is analyzed with better precision if the rough surfaces are divided into much more facets. In this paper, the coherent and incoherent scattering of rough Al and painted spheres are numerically observed, and the effects of surface roughness and materials are analyzed. The conclusions provide theoretical foundation for the terahertz scattering characteristics of electrically large rough targets.
Lee Y S. Principles of Terahertz Science and Technology[M]. New York: Springer, 2009: 1-9.
[2]
Piesiewicz R, Jansen C, Mittleman D, et al.. Scattering analysis for the modeling of THz communication systems[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(11): 3002-3009, DOI: 10.1109/TAP.2007.908559. DOI:10.1109/TAP.2007.908559
[3]
Fletcher J R, Swift G P, Dai D C, et al.. Scattering in THz imaging[C]. Proceedings of the SPIE 5989, Technologies for Optical Countermeasures Ⅱ; Femtosecond Phenomena Ⅱ; and Passive Millimetre-Wave and Terahertz Imaging Ⅱ, Bruges, Belgium, 2005, 5989: 598912. DOI: 10.1117/ 12.638007.
[4]
Duvillaret L, Garet F, and Coutaz J L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 739-746, DOI: 10.1109/2944.571775. DOI:10.1109/2944.571775
[5]
Nagashima T and Hangyo M. Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry[J]. Applied Physics Letters, 2001, 79(24): 3917-3919, DOI: 10.1063/1.1426258. DOI:10.1063/1.1426258
Su Jie, Sun Cheng, and Wang Xiao-qiu. A metallic dispersion model for numerical simulation[J]. Journal of Optoelectronics·Laser, 2013, 24(2): 408-414, DOI: 10.16136/j.joel.2013.02.011. DOI:10.16136/j.joel.2013.02.011
[7]
Ordal M A, Bell R J, Alexander R W, et al.. Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths[J]. Applied Optics, 1988, 27(6): 1203-1209, DOI: 10.1364/AO.27.001203. DOI:10.1364/AO.27.001203
Hua Hou-qiang, Jiang Yue-song, Su Lin, et al.. High-frequency analysis on THz RCS of complex conductive targets in free space[J]. Infrared and Laser Engineering, 2014, 43(3): 687-693.
[9]
Li Z, Cui T J, Zhong X J, et al.. Electromagnetic scattering characteristics of PEC targets in the terahertz regime[J]. IEEE Antennas and Propagation Magazine, 2009, 51(1): 39-50, DOI: 10.1109/MAP.2009.4939018. DOI:10.1109/MAP.2009.4939018
Wang Rui-jun, Deng Bin, Wang Hong-qiang, et al.. Electromagnetic scattering characteristic of aluminous targets in the terahertz and far infrared region[J]. Acta Physica Sinica, 2014, 63(13): 134102, DOI: 10.7498/aps.63.134102. DOI:10.7498/aps.63.134102
[11]
Jansen C, Priebe S, Möller C, et al.. Diffuse scattering from rough surfaces in THz communication channels[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(2): 462-472, DOI: 10.1109/TTHZ.2011.2153610. DOI:10.1109/TTHZ.2011.2153610
[12]
Nam K M, Zurk L M, and Schecklman S. Modeling terahertz diffuse scattering from granular media using radiative transfer theory[J]. Progress in Electromagnetics Research B, 2012, 38: 205-223. DOI:10.2528/PIERB11102304
[13]
Sundberg G, Zurk L M, Schecklman S, et al.. Modeling rough-surface and granular scattering at terahertz frequencies using the Finite-Difference time-domain method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3709-3719, DOI: 10.1109/TGRS.2010.2048717. DOI:10.1109/TGRS.2010.2048717
[14]
Jansen C, Krumbholz N, Geise R, et al.. Scaled radar cross section measurements with terahertz-spectroscopy up to 800 GHz[C]. Proceedings of the 3rd European Conference on Antennas and Propagation, Berlin, 2009: 3645-3648.
Nie Xue-ying, Xiang Fei-di, Huang Xin, et al.. Measurement of terahertz radar cross sections of metal plates[J]. Laser Technology, 2016, 40(5): 676-681. DOI:10.7510/jgjs.issn.1001-3806.2016.05.012
Yang Yang, Liu Bing, Zhang Jing-shui, et al.. Influence of rough metal surface on the scattering properties of terahertz frequency[J]. Laser & Infrared, 2014, 44(8): 922-926.
Yang Yang and Jing Lei. Impact of the metal permittivity on radar target scattering cross section[J]. Laser & Infrared, 2013, 43(2): 155-158.
[18]
Ulaby F T, Moore R K, and Fung A K. Microwave Remote Sensing: Active and Passive. Volume Ⅱ: Radar Remote Sensing and Surface Scattering and Emission Theory[M]. Norwood: Artech House, Inc., 1982: 304-307.
[19]
Wu Z S and Cui S M. Bistatic scattering by arbitrarily shaped objects with rough surface at optical and infrared frequencies[J]. International Journal of Infrared and Millimeter Waves, 1992, 13(4): 537-549, DOI: 10.1007/BF01010711. DOI:10.1007/BF01010711]