Scattering Properties of Electromagnetic Waves from Randomly Oriented Rough Metal Plate in the Lower Terahertz Region
Chen Gang①,* Dang Hongxing① Tan Xiaomin① Chen Hui② Cui Tiejun②
①(China Academy of Space Technology (Xi'an), Xi'an 710000, China) ②(State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China)
Abstract:An efficient hybrid algorithm is proposed to analyze the electromagnetic scattering properties of an infinitely thin metal plate in the lower terahertz (THz) frequency region. In this region, the metal plate can be viewed as a perfect electrically conductive object with a marginally rough surface. Hence, the THz scattered field from the metal plate can be divided into coherent and incoherent parts. The physical optics and truncated-wedge incremental-length diffraction coefficients methods are used to compute the coherent part, whereas the small perturbation method is used to compute the incoherent part. Then, the radar cross section of the rough metal plate surface is computed by the multilevel fast multipole and proposed hybrid algorithms. The numerical results show that the proposed algorithm has a good accuracy when rapidly simulating the scattering properties in the lower THz region.
Wang Rui-jun, Wang Hong-qiang, Zhuang Zhao-wen, et al.. Research progress of terahertz radar technology[J]. Laser & Optoelectronics Progress, 2013, 50(4): 040001.
[3]
Cooper K B, Dengler R J, Llombart N, et al.. Penetrating 3-D imaging at 4-and 25-m range using a submillimeter-wave radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(12): 2771-2778. DOI:10.1109/TMTT.2008.2007081
[4]
Li Z, Cui T J, Zhong X J, et al.. Electromagnetic scattering characteristics of PEC targets in the terahertz regime[J]. IEEE Antennas and Propagation Magazine, 2009, 51(1): 39-50. DOI:10.1109/MAP.2009.4939018
[5]
Zhong X J, Cui T J, Li Z, et al.. Terahertz-wave scattering by perfectly electrical conducting objects[J]. Journal of Electromagnetic Waves and Applications, 2007, 21(15): 2331-2340. DOI:10.1163/156939307783134443
[6]
Wu Z S. IR laser backscattering from an arbitrarily shaped dielectric object with rough surface[J]. Journal of Electronics (China), 1993, 10(4): 298-306. DOI:10.1007/BF02783158
[7]
Ruck G T, Barrick D E, Stuart W D, et al.. Radar Cross Section Handbook[M]. New York: Plenum Press, 1970, Ch.9.
[8]
Ulaby F T, Moore R K, and Fung A K. Microwave Remote Sensing, vol. Ⅱ[M]. Boston, USA: Artech House, 1978, Ch.12.
[9]
Johansen P M. Uniform physical theory of diffraction equivalent edge currents for truncated wedge strips[J]. IEEE Transactions on Antennas and Propagation, 1996, 44(7): 989-995. DOI:10.1109/8.504306
[10]
Wu Z S and Cui S M. Bistatic scattering by arbitrarily shaped objects with rough surface at optical and infrared frequencies[J]. International Journal of Infrared and Millimeter Waves, 1992, 13(4): 537-549. DOI:10.1007/BF01010711
[11]
Thorsos E I. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum[J]. The Journal of the Acoustical Society of America, 1988, 83(1): 78-92. DOI:10.1121/1.396188]