Optical System and Detection Range Analysis of Synthetic Aperture Ladar
Li Daojing①* Hu Xuan①②
①(Key Laboratory of Science and Technology on Microwave Imaging, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China) ②(University of Chinese Academy of Sciences, Beijing 100049, China)
Abstract:Optical system and detection range of Synthetic Aperture Ladar (SAL) are analyzed. According to the imaging characteristics of SAL, the concept that SAL uses non-imaging diffractive optical system are proposed, meanwhile, the phased array model is introduced to analyze its performance. In the condition of using binary optical element on the feeder and primary mirror, the phaser parameters and beam pattern are presented using simulation. The signal of 2° view field is introduced into fiber with the 300 mm aperture telescope and compressed optical path. The radar detection range equation of SAL is introduced, coherent detection and signal accumulation gain are analyzed, the conclusion is SAL has good ability of detecting weak signal. Aiming at application requirement, system parameters and working modes of airborne SAL are given with high resolution and long detection range. With 5 cm resolution, the airborne SAL can achieve 5 km detection range with 1.5 km swath in strip-map imaging mode and 10 km detection range with 1 km swath in sliding spotlight imaging mode.
李道京, 胡 烜. 合成孔径激光雷达光学系统和作用距离分析[J]. 雷达学报, 2018, 7(2): 263-274.
Li Daojing, Hu Xuan. Optical System and Detection Range Analysis of Synthetic Aperture Ladar. JOURNAL OF RADARS, 2018, 7(2): 263-274.
Krause B W, Buck J, Ryan C, et al.. Synthetic aperture ladar flight demonstration[C]. Proceedings of 2011 Conference on Lasers and Electro-Optics, Baltimore, MD, USA, 2011.
[2]
李道京, 张清娟, 刘波, 等. 机载合成孔径激光雷达关键技术和实现方案分析[J]. 雷达学报, 2013, 2(2):143-151. DOI:10.3724/SP.J.1300.2013.13021.Li Dao-jing, Zhang Qing-juan, Liu Bo, et al. Key technology and implementation scheme analysis of air-borne synthetic aperture ladar. Journal of Radars, 2013, 2(2):143-151. DOI:10.3724/SP.J.1300.2013.13021.
[3]
Liu L R. Coherent and incoherent synthetic-aperture imaging ladars and laboratory-space experimental demonstrations. Applied Optics, 2013, 52(4):579-599. DOI:10.1364/AO.52.000579.
[4]
Zhao Z L, Huang J Y, Wu S D, et al. Experimental demonstration of tri-aperture differential synthetic aperture ladar. Optics Communications, 2017, 389:181-188. DOI:10.1016/j.optcom.2016.12.024.
[5]
Li G Z, Wang N, Wang R, et al. Imaging method for airborne SAL data. Electronics Letters, 2017, 53(5):351-353. DOI:10.1049/el.2016.4205.
[6]
卢智勇, 周煜, 孙建峰, 等. 机载直视合成孔径激光成像雷达外场及飞行实验[J]. 中国激光, 2017, 44(1):0110001 DOI:10.3788/CJL201744.0110001.Lu Zhi-yong, Zhou Yu, Sun Jian-feng, et al. Airborne down-looking synthetic aperture imaging ladar field experiment and its flight testing. Chinese Journal of Lasers, 2017, 44(1):0110001 DOI:10.3788/CJL201744.0110001.
田芊, 廖延彪, 孙利群. 工程光学[M]. 北京:清华大学出版社, 2006:35-38.Tian Qian, Liao Yan-biao, and Sun Li-qun. Engineering Optics[M]. Beijing:Tsinghua University Press, 2006:35-38.
[9]
杜剑波, 李道京, 马萌, 等. 基于干涉处理的机载合成孔径激光雷达振动估计和成像[J]. 中国激光, 2016, 43(9):0910003 DOI:10.3788/CJL201643.0910003.Du Jian-bo, Li Dao-jing, Ma Meng, et al. Vibration estimation and imaging of airborne synthetic aperture ladar based on interferometry processing. Chinese Journal of Lasers, 2016, 43(9):0910003 DOI:10.3788/CJL201643.0910003.
[10]
伍洋. 射电望远镜天线相控阵馈源技术研究[D].[博士论文], 西安电子科技大学, 2013:9-21.Wu Yang. Research on the phased array feed technology for the radio telescope[D].[Ph.D. dissertation], Xidian University, 2013:9-21.
[11]
Yaacobi A, Sun J, Moresco M, et al. Integrated phased array for wide-angle beam steering. Optics Letters, 2014, 39(15):4575-4578. DOI:10.1364/OL.39.004575.
[12]
Sun J, Timurdogan E, Yaacobi A, et al. Large-scale nanophotonic phased array. Nature, 2013, 493(7431):195-199. DOI:10.1038/nature11727.
[13]
聂光. 光波导相控阵扫描光束优化方法研究[D].[硕士论文], 西安电子科技大学, 2015:25-33.Nie Guang. Study on beam optimization method for optical waveguide phased array[D].[Master dissertation], Xidian University, 2015:25-33.
[14]
周高杯, 宋红军, 邓云凯. 基于波束空间的SAR阵列天线波束展宽方法[J]. 浙江大学学报(工学版), 2011, 45(12):2252-2258. DOI:10.3785/j.issn.1008-973X.2011.12.028.Zhou Gao-bei, Song Hong-jun, and Deng Yun-kai. Investigation of SAR array antenna beam broadening based on beam pattern space. Journal of Zhejiang University (Engineering Science), 2011, 45(12):2252-2258. DOI:10.3785/j.issn.1008-973X.2011.12.028.
[15]
任波, 赵良波, 朱富国. 高分三号卫星C频段多极化有源相控阵天线系统设计[J]. 航天器工程, 2017, 26(6):68-74. DOI:10.3969/j.issn.1673-8748.2017.06.011.Ren Bo, Zhao Liang-bo, and Zhu Fu-guo. Design of C-band multi-polarized active phased array antenna system for GF-3 satellite. Spacecraft Engineering, 2017, 26(6):68-74. DOI:10.3969/j.issn.1673-8748.2017.06.011.
[16]
王帅, 孙华燕, 郭惠超, 等. APD阵列单脉冲三维成像激光雷达的发展与现状[J]. 激光与红外, 2017, 47(4):389-398. DOI:10.3969/j.issn.1001-5078.2017.04.001.Wang Shuai, Sun Hua-yan, Guo Hui-chao, et al. Development and status of single pulse 3D imaging lidar based on APD array. Laser & Infrared, 2017, 47(4):389-398. DOI:10.3969/j.issn.1001-5078.2017.04.001.
[17]
Skolnik M I and Wang Jun. Radar Handbook[M]. Beijing:Electronic Industry Press, 2003:9-10.
[18]
Pioneers in Photonic Technology. GAEA-210 megapixel phase only spatial light modulator (Reflective)[EB/OL]. https://holoeye.com/spatial-light-modulators/gaea-4k-phase-only-spatial-light-modulator/?from=singlemessage&isappinstalled=0
焦建超, 苏云, 王保华, 等. 地球静止轨道膜基衍射光学成像系统的发展与应用[J]. 国际太空, 2016,(6):49-55.Jiao Jian-chao, Su Yun, Wang Bao-hua, et al. Development and application of GEO membrane based diffraction optical imaging system. Space International, 2016,(6):49-55.
[21]
舒嵘, 徐之海. 激光雷达成像原理与运动误差补偿方法[M]. 北京:科学出版社, 2014:8-10.Shu Rong and Xu Zhihai. Imaging Thesis and Moving Comprehension of Ladar[M]. Beijing:Science Press, 2014:8-10.
[22]
保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京:电子工业出版社, 2005:105-115.Bao Zheng, Xing Meng-dao, and Wang Tong. Radar Imaging Technology[M]. Beijing:Electronic Industry Press, 2015:105-115.
[23]
Barber Z W and Dahl J R. Synthetic aperture ladar imaging demonstrations and information at very low return levels. Applied Optics, 2014, 53(24):5531-5537. DOI:10.1364/AO.53.005531.