Abstract:Linear Array Synthetic Aperture Radar (LASAR) is a novel and promising radar imaging technique. In recent years, Compressed Sensing (CS) sparse recovery has been a research focus for high-resolution three-Dimensional (3-D) LASAR imaging. Compared with the traditional two-Dimensional (2-D) SAR imaging, LASAR suffers from many problems, including under-sampling data and multi-dimensional and higher-order phase errors due to its sparse Linear Array Antenna (LAA) and the joint 2-D motions of the platform and LAA. The conventional autofocusing methods of 2-D SAR may be not suitable for CS-based LASAR 3-D sparse autofocusing. To address the multi-dimensional and higher-order phase errors in LASAR 3-D imaging with respect to under-sampling data, in this paper, we propose a sparse autofocusing algorithm based on semi-definite programming for CS-based LASAR imaging. First, by combining CS-based imaging theory, image maximum sharpness, and the minimum square error principle, we construct a LASAR phase-error estimation model based on under-sampled data. Next, we use semi-definite programming relaxation to estimate the phase errors. Lastly, we employ an iterated approximation method to improve the precision of the phase-error estimation and achieve the final CS-based LASAR autofocusing. To further improve the efficiency of the algorithm, we select only the dominant scattering areas for LASAR phase-error estimation. We present our simulation and experimental results to confirm the effectiveness of out proposed algorithm.
Du L, Wang Y P, Hong W, et al. A three-dimensional range migration algorithm for downward-looking 3D-SAR with single-transmitting and multiple-receiving linear array antennas[J]. EURASIP Journal on Advances in Signal Processing, 2010, 2010:957916. DOI:10.1155/2010/957916
[2]
Liao K F, Zhang X L, and Shi J. Plane-wave synthesis and RCS extraction via 3-D linear array SAR[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14:994-997. DOI:10.1109/LAWP.2015.2389264
[3]
Han K Y, Wang Y P, Tan W X, et al. Efficient pseudopolar format algorithm for down-looking linear-array SAR 3-D imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3):572-576. DOI:10.1109/LGRS.2014.2351792
[4]
Zhang S Q, Zhu Y T, and Kuang G Y. Imaging of downward-looking linear array three-dimensional SAR based on FFT-MUSIC[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4):885-889. DOI:10.1109/LGRS.2014.2365611
[5]
Wei S J, Zhang X L, and Shi J. Linear array SAR imaging via compressed sensing[J]. Progress In Electromagnetics Research, 2011, 117:299-319. DOI:10.2528/PIER11033105
[6]
Zhang S Q, Zhu Y T, Dong G G, et al. Truncated SVD-based compressive sensing for downward-looking three-dimensional SAR imaging with uniform/nonuniform linear array[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9):1853-1857. DOI:10.1109/LGRS.2015.2431254
[7]
Zhang S Q, Dong G G, Kuang G Y, et al. Superresolution downward-looking linear array three-dimensional SAR imaging based on two-dimensional compressive sensing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(6):2184-2196. DOI:10.1109/JSTARS.2016.2549548
[8]
Peng X M, Tan W X, Hong W, et al. Airborne DLSLA 3-D SAR image reconstruction by combination of polar formatting and L1 regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1):213-226. DOI:10.1109/TGRS.2015.2453202
[9]
Tian J H, Sun J P, Han X, et al.. Motion compensation for compressive sensing SAR imaging with autofocus[C]. Proceedings of the 6th IEEE Conference on Industrial Electronics and Applications (ICIEA), Beijing, China, 2011:1564-1567. DOI:10.1109/ICIEA.2011.5975839.
[10]
Cetin M, Stojanovic I, Onhon O, et al. Sparsity-driven synthetic aperture radar imaging:Reconstruction, autofocusing, moving targets, and compressed sensing[J]. IEEE Signal Processing Magazine, 2014, 31(4):27-40. DOI:10.1109/MSP.2014.2312834
[11]
Onhon N Ö and Cetin M. A sparsity-driven approach for joint SAR imaging and phase error correction[J]. IEEE Transactions on Image Processing, 2012, 21(4):2075-2088. DOI:10.1109/TIP.2011.2179056
[12]
Zhe Z, Yao Z, Jiang C L, et al.. Autofocus of sparse microwave imaging radar based on phase recovery[C]. Proceedings of 2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC), Kunming, China, 2013:1-5. DOI:10.1109/ICSPCC.2013.6663989.
[13]
Chen Y C, Li G, Zhang Q, et al. Motion compensation for airborne SAR via parametric sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1):551-562. DOI:10.1109/TGRS.2016.2611522
[14]
Camlica S, Gurbuz A C, Arikan O, et al. Autofocused spotlight SAR image reconstruction of off-grid sparse scenes[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4):1880-1892. DOI:10.1109/TAES.2017.2675138
[15]
Ugur S and Arikan O. SAR image reconstruction and autofocus by compressed sensing[J]. Digital Signal Processing, 2012, 22(6):923-932. DOI:10.1016/j.dsp.2012.07.011
[16]
Kelly S, Yaghoobi M, and Davies M. Sparsity-based autofocus for undersampled synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2):972-986. DOI:10.1109/TAES.2014.120502
[17]
Ugur S, Arikan O, and Gürbüz A C. Off-grid sparse SAR image reconstruction by EMMP algorithm[C]. Proceedings of 2013 IEEE Radar Conference (RADAR), Ottawa, ON, Canada, 2013:1-4. DOI:10.1109/RADAR.2013.6586034.
[18]
Wei S J and Zhang X L. Sparse autofocus recovery for under-sampled linear array SAR 3-D imaging[J]. Progress In Electromagnetics Research, 2013, 140:43-62. DOI:10.2528/PIER13020614
[19]
Wei S J, Zhang X L, and Shi J. Sparse autofocus via Bayesian learning iterative maximum and applied for LASAR 3-D imaging[C]. Proceedings of 2014 IEEE Radar Conference, Cincinnati, OH, USA, 2014:666-669. DOI:10.1109/RADAR.2014.6875674.
[20]
Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. DOI:10.1109/TIT.2006.871582
[21]
Figueiredo M A T, Nowak R D, and Wright S J. Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4):586-597. DOI:10.1109/JSTSP.2007.910281
[22]
Ji S H, Xue Y, and Carin L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6):2346-2356. DOI:10.1109/TSP.2007.914345
[23]
Grant M and Boyd S. CVX:Matlab software for disciplined convex programming, version 1.21[R]. CVX Research, Inc., 2010. Available from:URL:http://cvxr.com/cvx.
[24]
Toh K C, Todd M J, and Tütüncü R H. SDPT3-A Matlab software package for semidefinite programming, version 1.3[J]. Optimization Methods and Software, 1999, 11(1/4):545-581. DOI:10.1080/10556789908805762
[25]
Liu K H, Wiesel A, and Munson D C. Synthetic aperture radar autofocus via semidefinite relaxation[J]. IEEE Transactions on Image Processing, 2013, 22(6):2317-2326. DOI:10.1109/TIP.2013.2249084