POA Correction Method Using High-resolution Full-polarization SAR Image
Sun Xiang①②* Song Hongjun① Wang Robert①② Li Ning③
①(Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China) ②(University of Chinese Academy of Sciences, Beijing 100049, China) ③(Henan University, Kaifeng 475004, China)
Abstract:Polarimetric decomposition in urban areas is important for monitoring the speed of city expansion and studying its ecological environmental influence. Using fully Polarimetric Synthetic Aperture Radar (PolSAR) is a method for consistent observation of large-range urban changes. In the last two decades, most research on decomposition methods have stated that Polarization Orientation Angle (POA) would affect the results of decomposition by overestimating the volume scattering contribution of urban areas. The available deorientation methods cannot rotate built-up areas with large POAs. This paper proposes an algorithm for decomposition of high-resolution urban area images based on a POA correction method. First, for high-resolution images of built-up areas, the POA changes radically pixel by pixel. An approximate assessment of urban areas can be accomplished using POA randomness. Then, to search for the true POA of large dominant POA areas (most built-up regions), the linear approximation method is used to locate POAs that can minimize cross-polarized terms. Thereby, the inaccurate decomposition that occurs by the deviation of POA can be fixed, and the accuracy of results improves. The fully PolSAR data of the Dujiangyan area in Sichuan Province, China are used to confirm the algorithm's effectiveness. The data are acquired by an X-band airborne SAR sensor designed by the Institute of Electronics, China Academy of Sciences (IECAS).
孙 翔, 宋红军, 王 宇, 李 宁. 基于高分辨率全极化SAR图像的取向角校正方法[J]. 雷达学报, 2018, 7(4): 465-474.
Sun Xiang, Song Hongjun, Wang Robert, Li Ning. POA Correction Method Using High-resolution Full-polarization SAR Image. JOURNAL OF RADARS, 2018, 7(4): 465-474.
赵春雷, 王亚梁, 阳云龙, 等. 雷达极化信息获取及极化信号处理技术研究综述[J]. 雷达学报, 2016, 5(6):620-638. DOI:10.12000/JR16092 Zhao Chun-lei, Wang Ya-liang, Yang Yun-long, et al. Review of radar polarization information acquisition and polarimetric signal processing techniques[J]. Journal of Radars, 2016, 5(6):620-638. DOI:10.12000/JR16092
[2]
Cloude S R and Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2):498-518. DOI:10.1109/36.485127
[3]
王雪松. 雷达极化技术研究现状与展望[J]. 雷达学报, 2016, 5(2):119-131. DOI:10.12000/JR16039 Wang Xue-song. Status and prospects of radar polarimetry techniques[J]. Journal of Radars, 2016, 5(2):119-131. DOI:10.12000/JR16039
[4]
王超, 张红, 陈曦, 等. 全极化合成孔径雷达图像处理[M]. 北京:科学出版社, 2008 Wang Chao, Zhang Hong, Chen Xi, et al.. Full Polarimetric SAR Image Processing[M]. Beijing:Beijing Science Press, 2008
[5]
Krogager E. New decomposition of the radar target scattering matrix[J]. Electronics Letters, 1990, 26(18):1525-1527. DOI:10.1049/el:19900979
[6]
Van Zyl J J. Unsupervised classification of scattering behavior using radar polarimetry data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27(1):36-45. DOI:10.1109/36.20273
[7]
Cloude S R. Target decomposition theorems in radar scattering[J]. Electronics Letters, 1985, 21(1):22-24. DOI:10.1049/el:19850018
[8]
Pottier E. Unsupervised classification scheme and topography derivation of POLSAR data based on the H/A/a polarimetric decomposition theorem[C]. Proceedings of the 4th International Workshop on Radar Polarimetry, Nantes, France, 1998:535-548
[9]
陈思伟, 李永祯, 王雪松, 等. 极化SAR目标散射旋转域解译理论与应用[J]. 雷达学报, 2017, 6(5):442-455. DOI:10.12000/ JR17033 Chen Si-wei, Li Yong-zhen, Wang Xue-song, et al. Polarimetric SAR target scattering interpretation in rotation domain:Theory and application[J]. Journal of Radars, 2017, 6(5):442-455. DOI:10.12000/JR17033
[10]
Xu F and Jin Y Q. Deorientation theory of polarimetric scattering targets and application to terrain surface classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(10):2351-2364. DOI:10.1109/ TGRS.2005.855064
[11]
Yamaguchi Y, Sato A, Boerner W M, et al. Four-component scattering power decomposition with rotation of coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6):2251-2258. DOI:10.1109/ TGRS.2010.2099124
[12]
Lee J S, Schuler D L, and Ainsworth T L. Polarimetric SAR data compensation for terrain azimuth slope variation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2153-2163. DOI:10.1109/36.868874
[13]
Lee J S, Schuler D L, Ainsworth T L, et al. On the estimation of radar polarization orientation shifts induced by terrain slopes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(1):30-41. DOI:10.1109/ 36.981347
[14]
Kimura H. Radar polarization orientation shifts in Built-Up areas[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2):217-221. DOI:10.1109/LGRS.2008.915737
[15]
Chen S W, Wang X S, Xiao S P, et al. General polarimetric model-based decomposition for coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3):1843-1855. DOI:10.1109/TGRS. 2013.2255615
[16]
Chen S W, Ohki M, Shimada M, et al. Deorientation effect investigation for model-based decomposition over oriented Built-Up areas[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2):273-277. DOI:10.1109/LGRS. 2012.2203577
[17]
Chen S W, Li Y Z, Wang X S, et al. Modeling and interpretation of scattering mechanisms in polarimetric synthetic aperture radar:Advances and perspectives[J]. IEEE Signal Processing Magazine, 2014, 31(4):79-89. DOI:10.1109/MSP.2014.2312099
[18]
Chen S W and Sato M. Tsunami damage investigation of built-up areas using multitemporal spaceborne full polarimetric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4):1985-1997. DOI:10.1109/TGRS.2012.2210050