Accurate Positioning with Stereo SAR Images and One Ground Control Point
Zhang Hong-min① Jin Guo-wang①② Xu Qing① Li Xiang-ying③
① (Information Engineering University, Zhengzhou 450001, China)
② (Chinese Academy of Surveying and Mapping, Beijing 100039, China)
③ (61512 Troops, Beijing 100088, China)
Abstract Geometrical imaging models and calculations of orientation parameters are the main factors affecting the positioning of stereo Synthetic Aperture Radar (SAR) images. For accurate positioning with squint stereo SAR images and less Ground Control Points (GCPs), a positioning algorithm with one GCP is designed. In this algorithm, the position and velocity of the radar antenna phase center are derived using orbit parameters, and the close range and Doppler centroid of the SAR images are compensated by one GCP. Thus, accurate orientation parameters are obtained and accurate positioning with stereo SAR images is completed. Airborne SAR images acquired by the Chinese Academy of Surveying and Mapping are used in experiments. The positioning errors of the checkpoints are calculated and analyzed, and it verified the accuracy and effectiveness of the proposed method.
Key words : Synthetic Aperture Radar (SAR)
Stereo
Positioning
Range-Doppler
Ground Control Point (GCP)
Received: 2013-12-23;
Published: 2014-03-24
Cite this article:
Zhang Hong-min,Jin Guo-wang,Xu qing et al. Accurate Positioning with Stereo SAR Images and One Ground Control Point[J]. JOURNAL OF RADARS, 2014, 3(1): 85-91.
[1]
Wang Siyu, Gao Xin, Sun Hao, Zheng Xinwei, Sun Xian. An Aircraft Detection Method Based on Convolutional Neural Networks in High-Resolution SAR Images [J]. JOURNAL OF RADARS, 2017, 6(2): 195-203.
[2]
Ding Chibiao, Liu Jiayin, Lei Bin, Qiu Xiaolan. Preliminary Exploration of Systematic Geolocation Accuracy of GF-3 SAR Satellite System [J]. JOURNAL OF RADARS, 2017, 6(1): 11-16.
[3]
Wan Xianrong, Sun Xuwang, Yi Jianxin, Lü Min, Rao Yunhua. Synchronous Design and Test of Distributed Passive Radar Systems Based on Digital Broadcasting and Television [J]. JOURNAL OF RADARS, 2017, 6(1): 65-72.
[4]
Liu Yunlong, Li Yanlei, Zhou Liangjiang, Liang Xingdong. A Fast Precise Geometric Calibration Method for Airborne SAR [J]. JOURNAL OF RADARS, 2016, 5(4): 419-424.
[5]
Wang Yanfei, Liu Chang, Zhan Xueli, Han Song. Technology and Applications of UAV Synthetic Aperture Radar System [J]. JOURNAL OF RADARS, 2016, 5(4): 333-349.
[6]
Zhao Yongsheng, Zhao Yongjun, Zhao Chuang. Weighted Least Squares Algorithm for Single-observer Passive Coherent Location Using DOA and TDOA Measurements [J]. JOURNAL OF RADARS, 2016, 5(3): 302-311.
[7]
Zhang Zhe, Zhang Bingchen, Hong Wen, Wu Yirong. Accelerated Sparse Microwave Imaging Phase Error Compensation Algorithm Based on Combination of SAR Raw Data Simulator and Map-drift Autofocus Algorithm [J]. JOURNAL OF RADARS, 2016, 5(1): 25-34.
[8]
Guo Zhen-yu, Lin Yun, Hong Wen. A Focusing Algorithm for Circular SAR Based on Phase Error Estimation in Image Domain [J]. JOURNAL OF RADARS, 2015, 4(6): 681-688.
[9]
Ding Zhen-yu, Tan Wei-xian, Wang Yan-ping, Hong Wen, Wu Yi-rong. Yaw Angle Error Compensation for Airborne 3-D SAR Based on Wavenumber-domain Subblock [J]. JOURNAL OF RADARS, 2015, 4(4): 467-473.
[10]
Zhan Xue-li, Wang Yan-fei, Wang Chao, Li He-ping. A Digital Dechirp Approach for Synthetic Aperture Radar [J]. JOURNAL OF RADARS, 2015, 4(4): 474-480.
[11]
Li Yang, Lin Yun, Zhang Jing-jing, Guo Xiao-yang, Chen Shi-qiang, Hong Wen. Estimation and Removing of Anisotropic Scattering for Multiaspect Polarimetric SAR Image [J]. JOURNAL OF RADARS, 2015, 4(3): 254-264.
[12]
Xu Cheng-bin, Zhou Wei, Cong Yu, Guan Jian. Ship Analysis and Detection in High-resolution Pol-SAR Imagery Based on Peak Zone [J]. JOURNAL OF RADARS, 2015, 4(3): 367-373.
[13]
Zhou Hui, Zhao Feng-jun, Yu Wei-dong, Yang Jian. SAR Imaging of Ground Moving Targets with Non-ideal Motion Error Compensation(in English) [J]. JOURNAL OF RADARS, 2015, 4(3): 265-275.
[14]
Zhao Yu-lu, Zhang Qun-ying, Li-Chao, Ji Yi-cai, Fang Guang-you. Vibration Error Analysis and Motion Compensation of Video Synthetic Aperture Radar [J]. JOURNAL OF RADARS, 2015, 4(2): 230-239.
[15]
Zhan Xue-li, Wang Yan-fei, Wang Chao, Liu Bi-dan. Research on Overlapped Subaperture Real-time Imaing Algorithm for Pulse Compression Airborne Strip SAR System [J]. JOURNAL OF RADARS, 2015, 4(2): 199-208.