JOURNAL OF RADARS
 Home | About Journal | Ethics Statement | Editorial Board | Reviewers | Instruction | Subscriptions | Contacts Us | Chinese
JOURNAL OF RADARS  2016, Vol. 5 Issue (2): 217-227    DOI: 10.12000/JR16019
Papers Current Issue | Next Issue | Archive | Adv Search |
Polarimetric SAR Image Supervised Classification Method Integrating Eigenvalues
Xing Yanxiao*①② Zhang Yi Li Ning Wang Yu Hu Guixiang①②
(Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)
(University of Chinese Academy of Sciences, Beijing 100039, China)
 Download: PDF (12849 KB)   [HTML]( )   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract 

Since classification methods based on H/α space have the drawback of yielding poor classification results for terrains with similar scattering features, in this study, we propose a polarimetric Synthetic Aperture Radar (SAR) image classification method based on eigenvalues. First, we extract eigenvalues and fit their distribution with an adaptive Gaussian mixture model. Then, using the naive Bayesian classifier, we obtain preliminary classification results. The distribution of eigenvalues in two kinds of terrains may be similar, leading to incorrect classification in the preliminary step. So, we calculate the similarity of every terrain pair, and add them to the similarity table if their similarity is greater than a given threshold. We then apply the Wishart distance-based KNN classifier to these similar pairs to obtain further classification results. We used the proposed method on both airborne and spaceborne SAR datasets, and the results show that our method can overcome the shortcoming of the H/α-based unsupervised classification method for eigenvalues usage, and produces comparable results with the Support Vector Machine (SVM)-based classification method.

Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Key wordsPolarimetric Synthetic Aperture Radar (SAR)   Terrain classification   Eigenvalues     
Received: 2016-01-25; Published: 2016-04-18
Fund:

The National Natural Science Foundation of China (61422113)

Cite this article:   
. Polarimetric SAR Image Supervised Classification Method Integrating Eigenvalues[J]. JOURNAL OF RADARS, 2016, 5(2): 217-227.
 
No references of article
[1] Zou Huanxin, Luo Tiancheng, Zhang Yue, Zhou Shilin. Combined Conditional Random Fields Model for Supervised PolSAR Images Classification[J]. JOURNAL OF RADARS, 2017, 6(5): 541-553.
[2] Zhang Yue, Zou Huanxin, Shao Ningyuan, Zhou Shilin, Ji Kefeng. Fast Superpixel Segmentation Algorithm for PolSAR Images[J]. JOURNAL OF RADARS, 2017, 6(5): 564-573.
[3] Yang Wen, Zhong Neng, Yan Tianheng, Yang Xiangli. Classification of Polarimetric SAR Images Based on the Riemannian Manifold[J]. JOURNAL OF RADARS, 2017, 6(5): 433-441.
[4] She Xiaoqiang, Qiu Xiaolan, Lei Bin, Zhang Wei, Lu Xiaojun. A Classification Method Based on Polarimetric Entropy and GEV Mixture Model for Intertidal Area of PolSAR Image[J]. JOURNAL OF RADARS, 2017, 6(5): 554-563.
[5] Tao Chensong, Chen Siwei, Li Yongzhen, Xiao Shunping. Polarimetric SAR Terrain Classification Using Polarimetric Features Derived from Rotation Domain[J]. JOURNAL OF RADARS, 2017, 6(5): 524-532.
[6] Zhong Neng, Yang Wen, Yang Xiangli, Guo Wei. Unsupervised Classification forPolarimetricSynthetic ApertureRadar Images Basedon Wishart Mixture Models[J]. JOURNAL OF RADARS, 2017, 6(5): 533-540.
[7] Xu Feng, Wang Haipeng, Jin Yaqiu. Deep Learning as Applied in SAR Target Recognition and Terrain Classification[J]. JOURNAL OF RADARS, 2017, 6(2): 136-148.
[8] Zhang Jie, Zhang Xi, Fan Chenqing, Meng Junmin. Discussion on Application of Polarimetric Synthetic Aperture Radar in Marine Surveillance[J]. JOURNAL OF RADARS, 2016, 5(6): 596-606.
[9] Ji Kefeng, Wang Haibo, Leng Xiangguang, Xing Xiangwei, Kang Lihong. Spaceborne Compact Polarimetric Synthetic Aperture Radar for Ship Detection[J]. JOURNAL OF RADARS, 2016, 5(6): 607-619.
[10] Hong Wen. Hybrid-polarity Architecture Based Polarimetric SAR: Principles and Applications (in Chinese and in English)[J]. JOURNAL OF RADARS, 2016, 5(6): 559-595.
[11] Li Yang, Lin Yun, Zhang Jing-jing, Guo Xiao-yang, Chen Shi-qiang, Hong Wen. Estimation and Removing of Anisotropic Scattering for Multiaspect Polarimetric SAR Image[J]. JOURNAL OF RADARS, 2015, 4(3): 254-264.
[12] Zhou Wei,Sun Yan-li,Xu Cheng-bin,Guan Jian. A Method for Discrimination of Ship Target and Azimuth Ambiguity in Multi-polarimetric SAR Imagery[J]. JOURNAL OF RADARS, 2015, 4(1): 84-92.
[13] Hua Wen-qiang,Wang Shuang,Hou Biao. Semi-supervised Learning for Classification of Polarimetric SAR Images Based on SVM-Wishart[J]. JOURNAL OF RADARS, 2015, 4(1): 93-98.
[14] Wang Shuang, Yu Jia-ping, Liu Kun, Hou Biao, Jiao Li-cheng. Polarimetric SAR Speckle Reduction Based on Bilateral Filtering[J]. JOURNAL OF RADARS, 2014, 3(1): 35-44.
 

Copyright © 2011 JOURNAL OF RADARS
Support by Beijing Magtech Co.Ltd   E-mail:support@magtech.com.cn