JOURNAL OF RADARS
 Home | About Journal | Ethics Statement | Editorial Board | Reviewers | Instruction | Subscriptions | Contacts Us | Chinese
JOURNAL OF RADARS  2016, Vol. 5 Issue (6): 692-700    DOI: 10.12000/JR15132
Papers Current Issue | Next Issue | Archive | Adv Search |
Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning
Sun Xun Huang Pingping*② Tu Shangtan Yang Xiangli
(School of Electronic Information, Wuhan University, Wuhan 430072, China)
(Radar Research Institute, Inner Mongolia University of Technology, Hohhot 010051, China)
(Shanghai Institute of Satellite Engineering, Shanghai 200240, China)
 Download: PDF (10134 KB)   [HTML]( )   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract 

In this paper, we propose a supervised classification algorithm for Polarimetric Synthetic Aperture Radar (PolSAR) images using multiple-feature fusion and ensemble learning.First, we extract different polarimetric features, including extended polarimetric feature space, Hoekman, Huynen, H/alpha/A, and fourcomponent scattering features of PolSAR images.Next, we randomly select two types of features each time from all feature sets to guarantee the reliability and diversity of later ensembles and use a support vector machine as the basic classifier for predicting classification results.Finally, we concatenate all prediction probabilities of basic classifiers as the final feature representation and employ the random forest method to obtain final classification results.Experimental results at the pixel and region levels show the effectiveness of the proposed algorithm.

Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Sun Xun
Huang Pingping
Tu Shangtan
Yang Xiangli
Key wordsPolarimetric Synthetic Aperture Radar(PolSAR)   Ensemble learning   Supervised classification     
Received: 2015-12-27; Published: 2016-05-16
Fund:

The Inner Mongolia Autonomous Region Science and Technology Project (20131108,20140155),TheNational Natural Science Foundation of China (61271401,41501414),The Fudan University Key Laboratory of EMWInformation Open Fund Project (EMW201504)

Corresponding Authors: TN957   
 E-mail: cimhwangpp@163.com
Cite this article:   
Sun Xun,Huang Pingping,Tu Shangtan et al. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning[J]. JOURNAL OF RADARS, 2016, 5(6): 692-700.
 
No references of article
[1] Hu Dingsheng, Qiu Xiaolan, Lei Bin, Xu Feng. Analysis of Crosstalk Impact on the Cloude-decomposition-based Scattering Characteristic[J]. JOURNAL OF RADARS, 2017, 6(2): 221-228.
[2] Huang Xiaojing, Yang Xiangli, Huang Pingping, Yang Wen. Prototype Theory Based Feature Representation for PolSAR Images[J]. JOURNAL OF RADARS, 2016, 5(2): 208-216.
[3] Yang Ruliang, Dai Bowei, Li Haiying. Polarization Hierarchy and System Operating Architecture for Polarimetric Synthetic Aperture Radar[J]. JOURNAL OF RADARS, 2016, 5(2): 132-142.
[4] Zhou Wei,Sun Yan-li,Xu Cheng-bin,Guan Jian. A Method for Discrimination of Ship Target and Azimuth Ambiguity in Multi-polarimetric SAR Imagery[J]. JOURNAL OF RADARS, 2015, 4(1): 84-92.
 

Copyright © 2011 JOURNAL OF RADARS
Support by Beijing Magtech Co.Ltd   E-mail:support@magtech.com.cn