JOURNAL OF RADARS
 Home | About Journal | Ethics Statement | Editorial Board | Reviewers | Instruction | Subscriptions | Contacts Us | Chinese
JOURNAL OF RADARS  2017, Vol. 6 Issue (2): 136-148    DOI: 10.12000/JR16130
Papers Current Issue | Next Issue | Archive | Adv Search |
Deep Learning as Applied in SAR Target Recognition and Terrain Classification
Xu Feng*  Wang Haipeng  Jin Yaqiu
(Key Laboratory for Information Science of Electromagnetic Waves, Fudan University, Shanghai 200433, China)
 Download: PDF (29378 KB)   [HTML]( )   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract 

Deep learning such as deep neural networks has revolutionized the computer vision area. Deep learning-based algorithms have surpassed conventional algorithms in terms of performance by a significant margin. This paper reviews our works in the application of deep convolutional neural networks to target recognition and terrain classification using the SAR image. A convolutional neural network is employed to automatically extract a hierarchic feature representation from the data, based on which the target recognition and terrain classification can be conducted. Experimental results on the MSTAR benchmark dataset reveal that deep convolutional network could achieve a state-of-the-art classification accuracy of 99% for the 10-class task. For a polarimetric SAR image classification, we propose complex-valued convolutional neural networks for complex SAR images. This algorithm achieved a state-of-the-art accuracy of 95% for the 15-class task on the Flevoland benchmark dataset.

Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Xu Feng
Wang Haipeng
Jin Yaqiu
Key wordsSynthetic Aperture Radar (SAR)   Deep learning   Automatic Target Recognition (ATR)   Terrain classification     
Received: 2016-11-29; Published: 2017-04-24
Fund:

The National Natural Science Foundation of China (61571132, 61571134, 61331020), The Foundation of Shanghai Aerospace Science and Technology

Cite this article:   
Xu Feng,Wang Haipeng,Jin Yaqiu. Deep Learning as Applied in SAR Target Recognition and Terrain Classification[J]. JOURNAL OF RADARS, 2017, 6(2): 136-148.
 
No references of article
[1] Wen Gongjian, Zhu Guoqiang, Yin Hongcheng, Xing Mengdao, Yang Hu, Ma Conghui, Yan Hua, Ding Baiyuan, Zhong Jinrong. SAR ATR Based on 3D Parametric Electromagnetic Scattering Model[J]. JOURNAL OF RADARS, 2017, 6(2): 115-135.
[2] Zhao Feixiang, Liu Yongxiang, Huo Kai. Radar Target Recognition Based on Stacked Denoising Sparse Autoencoder[J]. JOURNAL OF RADARS, 2017, 6(2): 149-156.
[3] Ding Baiyuan, Wen Gongjian, Yu Liansheng, Ma Conghui. Matching of Attributed Scattering Center and Its Application to Synthetic Aperture Radar Automatic Target Recognition[J]. JOURNAL OF RADARS, 2017, 6(2): 157-166.
[4] Zeng Lina, Zhou Deyun, Li Xiaoyang, Zhang Kun. Novel SAR Target Detection Algorithm Using Free Training[J]. JOURNAL OF RADARS, 2017, 6(2): 177-185.
[5] Zhao Junxiang, Liang Xingdong, Li Yanlei. Change Detection in SAR CCD Based on the Likelihood Change Statistics[J]. JOURNAL OF RADARS, 2017, 6(2): 186-194.
[6] Wang Siyu, Gao Xin, Sun Hao, Zheng Xinwei, Sun Xian. An Aircraft Detection Method Based on Convolutional Neural Networks in High-Resolution SAR Images[J]. JOURNAL OF RADARS, 2017, 6(2): 195-203.
[7] Hu Dingsheng, Qiu Xiaolan, Lei Bin, Xu Feng. Analysis of Crosstalk Impact on the Cloude-decomposition-based Scattering Characteristic[J]. JOURNAL OF RADARS, 2017, 6(2): 221-228.
[8] Zhou Yejian, Zhang Lei, Wang Hongxian, Xing Mengdao. Performance Analysis on ISAR Imaging of Space Targets[J]. JOURNAL OF RADARS, 2017, 6(1): 17-24.
[9] Hu Jingqiu, Liu Falin, Zhou Chongbin, Li Bo, Wang Dongjin. CS-SAR Imaging Method Based on Inverse Omega-K Algorithm(in English)[J]. JOURNAL OF RADARS, 2017, 6(1): 25-33.
[10] Gu Wenkun, Wang Dangwei, Ma Xiaoyan. Distributed MIMO-ISAR Sub-image Fusion Method[J]. JOURNAL OF RADARS, 2017, 6(1): 90-97.
[11] Hong Wen. Hybrid-polarity Architecture Based Polarimetric SAR: Principles and Applications (in Chinese and in English)[J]. JOURNAL OF RADARS, 2016, 5(6): 559-595.
[12] Zhang Jingjing, Hong Wen, Yin Qiang. Robust Distributed-target-based Calibration Method for Polarimetric SAR Using Spherically Truncated Covariance Matrix[J]. JOURNAL OF RADARS, 2016, 5(6): 701-710.
[13] Sun Xun, Huang Pingping, Tu Shangtan, Yang Xiangli. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning[J]. JOURNAL OF RADARS, 2016, 5(6): 692-700.
[14] Zhao Tuan, Deng Yunkai, Wang Yu, Li Ning, Wang Xiangyu. Processing Sliding Mosaic Mode Data with Modified Full-Aperture Imaging Algorithm Integrating Scalloping Correction[J]. JOURNAL OF RADARS, 2016, 5(5): 548-557.
[15] Chen Wenfeng, Li Shaodong, Yang Jun, Ma Xiaoyan. Multiple Measurement Vectors ISAR Imaging Algorithm Based on a Class of Linearized Bregman Iteration[J]. JOURNAL OF RADARS, 2016, 5(4): 389-401.
 

Copyright © 2011 JOURNAL OF RADARS
Support by Beijing Magtech Co.Ltd   E-mail:support@magtech.com.cn