JOURNAL OF RADARS
 Home | About Journal | Ethics Statement | Editorial Board | Reviewers | Instruction | Subscriptions | Contacts Us | Chinese
JOURNAL OF RADARS  2017, Vol. 6 Issue (5): 433-441    DOI: 10.12000/JR17031
Reviews Current Issue | Next Issue | Archive | Adv Search |
Classification of Polarimetric SAR Images Based on the Riemannian Manifold
Yang Wen*  Zhong Neng  Yan Tianheng  Yang Xiangli
(School of Electronic Information, Wuhan University, Wuhan 430072, China)
 Download: PDF (1127 KB)   [HTML]( )   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Classification is one of the core components in the interpretation of Polarimetric Synthetic Aperture Radar (PolSAR) images. A new PolSAR image classification approach employs the structural properties of the Riemannian manifold formed by PolSAR covariance matrices. In this paper, we first review the Riemannian manifold metrics generally used in PolSAR image analysis. Then, we describe a sparse coding method for the covariance matrices in the Riemannian manifold. For supervised classification, we propose a PolSAR image classification method that considers spatial information based on kernel space sparse coding. As for unsupervised PolSAR image classification, a method that takes advantage of Riemannian sparse induced similarity is proposed. Experimental results on EMISAR and AIRSAR data demonstrate the effectiveness of the proposed methods.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Yang Wen
Zhong Neng
Yan Tianheng
Yang Xiangli
Key wordsPolarimetric SAR (PolSAR)   Image classification   Riemannian manifold   Sparse coding     
Received: 2017-03-24; Published: 2017-07-13
Fund: The National Natural Science Foundation of China (61331016, 61271401)
Cite this article:   
Yang Wen,Zhong Neng,Yan Tianheng et al. Classification of Polarimetric SAR Images Based on the Riemannian Manifold[J]. JOURNAL OF RADARS, 2017, 6(5): 433-441.
 
No references of article
[1] Zhao Juanping, Guo Weiwei, Liu Bin, Cui Shiyong, Zhang Zenghui, Yu Wenxian. Convolutional Neural Network-based SAR Image Classification with Noisy Labels[J]. JOURNAL OF RADARS, 2017, 6(5): 514-523.
[2] Zhong Neng, Yang Wen, Yang Xiangli, Guo Wei. Unsupervised Classification forPolarimetricSynthetic ApertureRadar Images Basedon Wishart Mixture Models[J]. JOURNAL OF RADARS, 2017, 6(5): 533-540.
[3] Zou Huanxin, Luo Tiancheng, Zhang Yue, Zhou Shilin. Combined Conditional Random Fields Model for Supervised PolSAR Images Classification[J]. JOURNAL OF RADARS, 2017, 6(5): 541-553.
[4] Zhang Yue, Zou Huanxin, Shao Ningyuan, Zhou Shilin, Ji Kefeng. Fast Superpixel Segmentation Algorithm for PolSAR Images[J]. JOURNAL OF RADARS, 2017, 6(5): 564-573.
[5] Zhang Jie, Zhang Xi, Fan Chenqing, Meng Junmin. Discussion on Application of Polarimetric Synthetic Aperture Radar in Marine Surveillance[J]. JOURNAL OF RADARS, 2016, 5(6): 596-606.
[6] Ji Kefeng, Wang Haibo, Leng Xiangguang, Xing Xiangwei, Kang Lihong. Spaceborne Compact Polarimetric Synthetic Aperture Radar for Ship Detection[J]. JOURNAL OF RADARS, 2016, 5(6): 607-619.
[7] Hong Wen. Hybrid-polarity Architecture Based Polarimetric SAR: Principles and Applications (in Chinese and in English)[J]. JOURNAL OF RADARS, 2016, 5(6): 559-595.
[8] Xing Yanxiao, Zhang Yi, Li Ning, Wang Yu, Hu Guixiang. Polarimetric SAR Image Supervised Classification Method Integrating Eigenvalues[J]. JOURNAL OF RADARS, 2016, 5(2): 217-227.
[9] Li Yang, Lin Yun, Zhang Jing-jing, Guo Xiao-yang, Chen Shi-qiang, Hong Wen. Estimation and Removing of Anisotropic Scattering for Multiaspect Polarimetric SAR Image[J]. JOURNAL OF RADARS, 2015, 4(3): 254-264.
[10] Zhou Wei,Sun Yan-li,Xu Cheng-bin,Guan Jian. A Method for Discrimination of Ship Target and Azimuth Ambiguity in Multi-polarimetric SAR Imagery[J]. JOURNAL OF RADARS, 2015, 4(1): 84-92.
[11] Hua Wen-qiang,Wang Shuang,Hou Biao. Semi-supervised Learning for Classification of Polarimetric SAR Images Based on SVM-Wishart[J]. JOURNAL OF RADARS, 2015, 4(1): 93-98.
[12] Wang Shuang, Yu Jia-ping, Liu Kun, Hou Biao, Jiao Li-cheng. Polarimetric SAR Speckle Reduction Based on Bilateral Filtering[J]. JOURNAL OF RADARS, 2014, 3(1): 35-44.
 

Copyright © 2011 JOURNAL OF RADARS
Support by Beijing Magtech Co.Ltd   E-mail:support@magtech.com.cn