② (空军预警学院 武汉 430019)
② (Air Force Early Warning Academy,Wuhan 430019,China)
多普勒信息对雷达运动目标跟踪性能的改善一直备受关注,通过目标多普勒观测信息,跟踪器能够更为精确地估计航迹参数。然而雷达的多普勒盲区(Doppler Blind Zone, DBZ)使得目标可能出现连续漏检问题,致使多目标跟踪性能恶化,因而提高雷达在多普勒盲区下的多目标跟踪性能对提高多普勒雷达探测性能具有重要意义。
近年来,基于随机有限集(Random Finite Set, RFS)的多目标跟踪算法[1,2]为多目标跟踪问题的研究提供了新的思路,因可避免复杂的数据关联,备受国内外学者推崇。该类算法已扩展到更一般的航迹形成[3]、自适应出生强度[4]和杂波密度[5]、传感器空间配准[6]和分布式融合[7,8]等一系列问题。本文基于RFS框架下的高斯混合概率假设密度(Gaussian Mixture Probability Hypothesis Density, GM-PHD)滤波器[9,10]对多普勒盲区下的多目标跟踪问题开展研究。
围绕多普勒盲区下的多目标跟踪问题,文献[11–13]通过将多普勒盲区建模成依赖目标状态的检测概率,将GM-PHD滤波器应用到多普勒盲区中的目标跟踪,估计的目标数量更稳定。然而,它们仅利用了与盲区有关的最小可检测速度(Minimum Detectable Velocity, MDV)信息,未充分利用多普勒量测,且未提供严格的推导和详细的实现步骤。一般地,多普勒盲区的宽度取决于MDV,因而,MDV为重要跟踪参数。为此,本文通过将考虑了MDV的检测概率模型引入GM-PHD更新式中,提出了多普勒盲区下带MDV的GM-PHD跟踪算法。
2 引入MDV信息的检测概率模型假设第k时刻目标的状态为
$\dot r_k^ \,\,{\rm{ = }}\frac{{\left( {{x_k} - x_k^s} \right)\left( {{{\dot x}_k} - \dot x_k^s} \right) + \left( {{y_k} - y_k^s} \right)\left( {{{\dot y}_k} - \dot y_k^s} \right) + \left( {{z_k} - z_k^s} \right)\left( {{{\dot y}_k} - \dot z_k^s} \right)}}{{\sqrt {{{\left( {{x_k} - x_k^s} \right)}^2} + {{\left( {{y_k} - y_k^s} \right)}^2} + {{\left( {{z_k} - z_k^s} \right)}^2}} }}$ | (1) |
$\dot r_{{\rm c},k} = \! - \frac{{\dot x_k^s\left( {x_k - x_k^s} \right) + \dot y_k^s\left( {y_k - y_k^s} \right) + \dot z_k^s\left( {z_k - z_k^s} \right)}}{{\sqrt {{{\left( {x_k - x_k^s} \right)}^2} + {{\left( {y_k - y_k^s} \right)}^2} + {{\left( {z_k - z_k^s} \right)}^2}} }} \ \ \ $ | (2) |
杂波凹口函数为目标多普勒与杂波多普勒之差nc ,可表示为:
$n_{\rm{c}} \!=\! \dot r_k \!-\! \dot r_{{\rm{c}},k} \!=\! \frac{{\dot x_k\left( {x_k \!-\! x_k^s} \right) \!+\! \dot y_k\left( {y_k \!-\! y_k^s} \right) \!+\! \dot z_k\left( {z_k \!-\! z_k^s} \right)}}{{\sqrt {{{\left( {x_k \!-\! x_k^s} \right)}^2} \!\!+\!\! {{\left( {y_k \!-\! y_k^s} \right)}^2} \!\!+\!\! {{\left( {z_k \!-\! z_k^s} \right)}^2}} }}$ | (3) |
众所周知,凹口技术在抑制杂波的同时也会对低多普勒频率的运动目标的检测造成影响[15]。检测概率
$p_{{\rm D},k}\left( \boldsymbol{x} \right) \approx p_{\rm D}\left[ {1 - {{\rm e}^{ - {{\left( {n_{\rm c}\left( x \right)/{\rm{MDV}}} \right)}^2}\log 2}}} \right]$ | (4) |
其中,pD为未考虑DBZ的常规检测概率。对nc在
$\begin{array}{l}n_{\rm{c}}\left( {{\boldsymbol{x}}_k} \right) \approx n_{\rm{c}}\left( {{\hat {\boldsymbol{x}}}_{k|k - 1}} \right){\rm{ + }}\frac{{\partial n_{\rm{c}}}}{{\partial {\boldsymbol{x}}_k}}| {_{{{x}}_k = \hat {\boldsymbol{x}}_{k|k - 1}}} \left( {{\boldsymbol{x}}_k - {\hat {\boldsymbol{x}}}_{k|k - 1}} \right)\\\;\;\;\;\;\;\;\;\;\;\; = n_{\rm{c}}\left( {{\hat {\boldsymbol{x}}}_{k|k - 1}} \right) \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; - \frac{{\partial n_{\rm{c}}}}{{\partial {\boldsymbol{x}}_k}}| {_{{\boldsymbol{x}}_k = \hat {{x}}_{k|k - 1}}} {\hat {{x}}}_{k|k - 1}{\rm{ + }}\frac{{\partial n_{\rm{c}}}}{{\partial {\boldsymbol{x}}_k}}| {_{{{x}}_k = \hat {{x}}_{k|k - 1}}} {{x}}_k\\\;\;\;\;\;\;\;\;\;\;\; = {y_{{\rm{f}}}}\left( {{\hat {\boldsymbol{x}}}_{k|k - 1}} \right) - {{\boldsymbol{H}}}_{\rm{f}}\left( {{\hat {\boldsymbol{x}}}_{k|k - 1}} \right){\boldsymbol{x}}_k\end{array}$ | (5) |
其中,
$y_{\rm{f}} \!=\! y_{\rm{f}}\left( {{{\hat {\boldsymbol{x}}}}_{k|k - 1}} \right) \!=\! n_{\rm{c}}\left( {{{\hat {\boldsymbol{x}}}}_{k|k - 1}} \right) \!+\! {{\boldsymbol{H}}}_{\rm{f}}\left( {{{\hat {\boldsymbol{x}}}}_{k|k - 1}} \right){{\hat {\boldsymbol{x}}}}_{k|k - 1}$ | (6) |
$ {\boldsymbol{H}}_{\rm{f}}\!\left( {{{\hat {\boldsymbol{x}}}}_{k|k - 1}} \right) \!\!=\!\! - \frac{{\partial n_{\rm{c}}}}{{\partial {\boldsymbol{x}}_k}}| {_{{{x}_k = {\hat {{x}}_{k|k - 1}}}} \!\!=\!\! {\left[\!\!\! {\begin{array}{*{20}{c}}{{n_1}}\!\! &\!\! {{n_2}}\!\! &\!\! {{n_3}} \!\!&\!\! {{n_4}} \!\!&\!\! {{n_5}} \!\!&\!\! {{n_6}}\end{array}}\!\!\! \right]^{\rm{T}}}} $ | (7) |
其中
将近似
$p_{{\rm{D}},k}\!\left( \!{\boldsymbol{x}} \!\right) \!=\! p_{\rm{D}}\! \!\left[ {1 \!-\! {c_{\rm{f}}}{\cal N}\!\left( \!{y_{\rm{f}}\left( {{{{\hat {\boldsymbol{x}}}}_{k|k - 1}}} \!\right);\!{\boldsymbol{H}}_{\rm{f}}\!\left(\! {{{{\hat {\boldsymbol{x}}}}_{k|k - 1}}} \!\right){\boldsymbol{x}},{R_{\rm{f}}}} \right)} \right]$ | (8) |
其中,
为实现落入多普勒盲区情况下的目标稳定跟踪,本节提出了一种考虑MDV和多普勒信息的GM-PHD滤波器。下面给出该滤波器的设计思路和具体实现过程。假设PHD滤波器的后验强度
${\upsilon _{k|k - 1}}\left( {\boldsymbol{x}} \right) = \int {{p_{{{\rm{D}},k}}}\left( {{ζ}} \right)} {f_{k|k - 1}}\left( {{\boldsymbol{x}}|{{ζ}}} \right){\upsilon _{k - 1}}\left( {{ζ}} \right){\rm d}{{ζ}} \\ \quad \quad \quad \quad \quad +\!\! \int {{\beta _{k|k - 1}}\left( {{\boldsymbol{x}}|{{ζ}}} \right)} {\upsilon _{k - 1}}\left( {{ζ}} \right){\rm d}{{ζ}} + {\gamma _k}\left( {\boldsymbol{x}} \right)$ | (9) |
$ {\upsilon _k}\left( {\boldsymbol{x}} \right) \!=\! \left[ {1 \!-\! {p_{{{\rm{D}},k}}}\left( {\boldsymbol{x}} \right)} \right]\!{\upsilon _{k|k - 1}}\left( {\boldsymbol{x}} \right) \\ \quad \quad \quad \ +\!\! \sum\limits_{{{z}} \in {Z}_k} {\frac{{{p_{{{\rm{D}},k}}}\left( {\boldsymbol{x}} \right)g_k\left( {{{z}}|{{x}}} \right){\upsilon _{k|k - 1}}\left( {\boldsymbol{x}} \right)}}{{{κ} _k\left( {\boldsymbol{z}} \right) \!+\!\!\displaystyle \!\int\! {{p_{{{\rm{D}},k}}}\left( {\boldsymbol{x}} \right)g_k\left( {{{z}}|{\boldsymbol{x}}} \right){\upsilon _{k|k - 1}}\left( {\boldsymbol{x}} \right){\rm d}{\boldsymbol{x}}} }}} $ | (10) |
其中,
$g_k\left( {{\boldsymbol{z}}|{\boldsymbol{x}}} \right) = {\cal N}\left( {{{\boldsymbol{y}}_{\rm{c}}};{\boldsymbol{H}}_{{\rm{c}},k}{\boldsymbol{x}},{\boldsymbol{R}}_{{\rm{c}},k}} \right){\cal N}\left( {{y_{\rm{d}}};h_{\rm{d}}({\boldsymbol{x}}),\sigma _{\rm{d}}^2} \right)$ | (11) |
其中,
z
为传统量测,包括位置分量
由式(9)和式(10)可知,检测概率对更新强度有一定程度的影响,但不影响预测强度。因此仅需关注推导考虑MDV信息后的更新强度公式。下面引述一个定理[18]。
定理 已知合适维度的 H , R , m , P ,且假定矩阵 R 和 P 为半正定矩阵,则
${\cal N}\left( {{{z}};{\boldsymbol{Hx}},{\boldsymbol{R}}} \right){\cal N}\left( {{\boldsymbol{x}};{\boldsymbol{m}},{\boldsymbol{P}}} \right)\\ \quad \ =\! {\cal N}\!\left( \!{{{z}};{\boldsymbol{Hm}},{\boldsymbol{S}}} \right)\!{\cal N}\!\left( \!{\boldsymbol{x};{\boldsymbol{m}} \!\!+\!\! {\boldsymbol{G}}\left(\! {{{z}} \!\!-\!\! {\boldsymbol{Hm}}} \!\right),{\boldsymbol{P}}\! \!-\!\! {\boldsymbol{GS}}{{\boldsymbol{G}}^{\rm{T}}}} \right)$ | (12) |
式中,
假定第k 时刻的预测强度具有以下GM形式:
${\upsilon _{k|k - 1}}\left( {\boldsymbol{x}} \right) = \sum\limits_{j = 1}^{{J_{k|k - 1}}} {w_{k|k - 1}^{\left( j \right)}{\cal N}\left( {{\boldsymbol{x}};{\boldsymbol{m}}_{k|k - 1}^{\left( j \right)},{\boldsymbol{P}}_{k|k - 1}^{\left( j \right)}} \right)} $ | (13) |
其中,
$\begin{array}{l}{\upsilon _k}\left( {\boldsymbol{x}} \right) = {\sum\limits_{j = 1}^{{J_{k|k}}} {w_{k|k}^{\left( j \right)}N} \left( {{\boldsymbol{x}};{\boldsymbol{m}}_{k|k}^{\left( j \right)},{\boldsymbol{P}}_{k|k}^{\left( j \right)}} \right)} \\\;\;\;\;\;\;\;\;\; \; = \sum\limits_{j = 1}^{{J_{k|k - 1}}} {w_{k|k,0}^{\left( j \right)}{\cal N}\left( {{\boldsymbol{x}};{\boldsymbol{m}}_{k|k,0}^{\left( j \right)},{\boldsymbol{P}}_{k|k,0}^{\left( j \right)}} \right)}\\ \quad \quad \quad \quad +\! \sum\limits_{{{z}} \in {{Z}}_k} \!\!{\sum\limits_{j = 1}^{{J_{k|k - 1}}}\!\! {w_{k|k}^{\left( j \right)}\left( \!{{z}} \!\right)\!{\cal N}\!\left(\! {{\boldsymbol{x}};{\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( \!{{z}} \!\right),{\boldsymbol{P}}_{k|k}^{\left( j \right)}\left(\! {{z}} \right)} \!\right)} } \\ \quad \quad \quad \quad +\sum\limits_{j = 1}^{{J_{k|k - 1}}} {w_{k|k,{\rm f}}^{\left( j \right)}{\cal N}\left( {{\boldsymbol{x}};{\boldsymbol{m}}_{k|k,{\rm f}}^{\left( j \right)},{\boldsymbol{P}}_{k|k,{\rm f}}^{\left( j \right)}} \right)} \\ \quad \quad \quad \quad + \!\!\sum\limits_{{{z}} \in {{Z}}_k}\!\!{\sum\limits_{j = 1}^{{J_{k|k - 1}}} \!\!{w_{k|k}^{\left( j \right)}\left(\! {{{{z}}_{\rm f}}}\! \right)\!{\cal N}\!\left( \!{{\boldsymbol{x}};{\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {{{{z}}_{\rm f}}} \right),{\boldsymbol{P}}_{k|k}^{\left( j \right)}\left(\! {{{{z}}_{\rm f}}} \!\right)} \!\right)} } \end{array}$ | (14) |
式中,
z
f 表示增强量测。分量
$\!\!\!\!\!\!\!\!\!\!\! w_{k|k,0}^{\left( j \right)} = \left( {1 - p_{\rm{D}}} \right)w_{k|k - 1}^{\left( j \right)} \quad \quad \quad \quad $ | (15) |
$ {\boldsymbol{m}}_{k|k,0}^{\left( j \right)} = {\boldsymbol{m}}_{k|k - 1}^{\left( j \right)}, {\boldsymbol{P}}_{k|k,0}^{\left( j \right)} = {\boldsymbol{P}}_{k|k - 1}^{\left( j \right)} $ | (16) |
通过对位置量测和多普勒量测序贯处理可得分量
$ w_{k|k}^{\left( j \right)}\left( {\boldsymbol{z}} \right) = \frac{{p_{\rm{D}}w_{k|k - 1}^{\left( j \right)}q_k^{\left( j \right)}\left( {\boldsymbol{z}} \right)}}{{\kappa _k\left( {\boldsymbol{z}} \right) + {w_{{\rm{sum}}}}}} $ | (17) |
$ {\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {\boldsymbol{z}} \right) = {\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {{{\boldsymbol{y}}_{\rm{c}}}} \right) + {\boldsymbol{G}}_{d,k}^{\left( j \right)}\left( {{{\boldsymbol{y}}_{\rm{c}}}} \right)\left( {{{\boldsymbol{y}}_{\rm{d}}} - h_{\rm{d}}\left( {{\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {{{\boldsymbol{y}}_{\rm{c}}}} \right)} \right)} \right) $ | (18) |
$ {\boldsymbol{P}}_{k|k}^{\left( j \right)}\left( {\boldsymbol{z}} \right) = \left[ {{\boldsymbol{I}} - {\boldsymbol{G}}_{{\rm{d}},k}^{\left( j \right)}\left( {{{\boldsymbol{y}}_{\rm{c}}}} \right){\boldsymbol{H}}_{\rm{d}}\left( {{\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {{{\boldsymbol{y}}_{\rm{c}}}} \right)} \right)} \right]{\boldsymbol{P}}_{k|k}^{\left( j \right)}\left( {{{\boldsymbol{y}}_{\rm{c}}}} \right) $ | (19) |
式中,均值
$ {\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {{{\boldsymbol{y}}_{\rm{c}}}} \right) = {\boldsymbol{m}}_{k|k - 1}^{\left( j \right)} + {\boldsymbol{G}}_{{\rm{c}},k}^{\left( j \right)}\left( {{\boldsymbol{y}}_{\rm{c}} - {\boldsymbol{H}}_{{\rm{c}},k}{\boldsymbol{m}}_{k|k - 1}^{\left( j \right)}} \right) $ | (20) |
$ {\boldsymbol{P}}_{k|k}^{\left( j \right)}\left( {{{\boldsymbol{y}}_{\rm{c}}}} \right) = \left[ {{\boldsymbol{I}} - {\boldsymbol{G}}_{{\rm{c}},k}^{\left( j \right)}{\boldsymbol{H}}_{{\rm{c}},k}} \right]{\boldsymbol{P}}_{k|k - 1}^{\left( j \right)} $ | (21) |
对应位置分量的增益和新息协方差分别为:
$ {\boldsymbol{G}}_{{\rm{c}},k}^{\left( j \right)} = {\boldsymbol{P}}_{k|k - 1}^{\left( j \right)}{\boldsymbol{H}}_{{\rm{c}},k}{\left[ {{{\mathit{\pmb{Ξ}}}}_{{\rm{c}},k}^{\left( j \right)}} \right]^{ - 1}} $ | (22) |
$ {{\mathit{\pmb{Ξ}}}}_{{\rm{c}},k}^{\left( j \right)} = {\boldsymbol{H}}_{{\rm{c}},k}{\boldsymbol{P}}_{k|k - 1}^{\left( j \right)}{\left[ {{\boldsymbol{H}}_{{\rm{c}},k}} \right]^{\rm{T}}} + {\boldsymbol{R}}_{{\rm{c}},k} $ | (23) |
在式(18)和式(19)中的对应多普勒分量的增益
$ {\boldsymbol{G}}_{{\rm{d}},k}^{\left( j \right)}\left( {{y_{\rm{c}}}} \right) = {\boldsymbol{P}}_{k|k}^{\left( j \right)}\left( {{{\boldsymbol{y}}_{\rm{c}}}} \right){\boldsymbol{H}}_{\rm{d}}\left( {{\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {{{\boldsymbol{y}}_{\rm{c}}}} \right)} \right){\left[ {\Xi _{{\rm{d}},k}^{\left( j \right)}\left( {{{\boldsymbol{y}}_{\rm{c}}}} \right)} \right]^{ - 1}} $ | (24) |
其中,相应的新息协方差为:
$ {{\mathit{\pmb{Ξ}}}}_{{\rm{d}},k}^{\left( j \right)}\left( {{{\boldsymbol{y}}_c}} \right) = {\boldsymbol{H}}_{\rm{d}}\left( {{\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {{{\boldsymbol{y}}_c}} \right)} \right){\boldsymbol{P}}_{k|k}^{\left( j \right)}\left( {{{\boldsymbol{y}}_{\rm{c}}}} \right){\left[ {{\boldsymbol{H}}_d\left( {{\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {{{\boldsymbol{y}}_{\rm{c}}}} \right)} \right)} \right]^{\rm{T}}} + \sigma _{\rm{d}}^2 $ | (25) |
在式(19)、式(24)和式(25)中,
$ {\boldsymbol{H}}_{\rm{d}}\left( {{\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {{{\boldsymbol{y}}_{\rm{c}}}} \right)} \right) = \frac{{\partial \dot r_k}}{{\partial {\boldsymbol{x}}_k}}\left| {_{x_k = m_{k|k}^{\left( j \right)}\left( {{y_{\rm{c}}}} \right)}} \right. = \left[ {\begin{array}{*{20}{c}} {h_1^{(j)}} & {h_2^{(j)}} & {h_3^{(j)}} & {h_4^{(j)}} & {h_5^{(j)}} & {h_6^{(j)}} \end{array}} \right] $ | (26) |
其中,
分量
$ w_{k|k,{\rm{f}}}^{\left( j \right)} = \frac{{p_{\rm{D}}}}{{1 - p_{\rm{D}}}}{c_f}{\cal N}\left( {y_{\rm{f}}\left( {{\boldsymbol{m}}_{k|k - 1}^{\left( j \right)}} \right);{\boldsymbol{H}}_{\rm{f}}\left( {{\boldsymbol{m}}_{k|k - 1}^{\left( j \right)}} \right){\boldsymbol{m}}_{k|k - 1}^{\left( j \right)},\Xi _{{\rm{f}},k}^{\left( j \right)}} \right)w_{k|k,0}^{\left( j \right)} $ | (27) |
$ {\boldsymbol{m}}_{k|k,{\rm{f}}}^{\left( j \right)} = {\boldsymbol{m}}_{k|k - 1}^{\left( j \right)} + {\boldsymbol{K}}_{{\rm{f}},k}^{\left( j \right)}\left( {y_{\rm{f}}\left( {{\boldsymbol{m}}_{k|k - 1}^{\left( j \right)}} \right) - {\boldsymbol{H}}_{\rm{f}}\left( {{\boldsymbol{m}}_{k|k - 1}^{\left( j \right)}} \right){\boldsymbol{m}}_{k|k - 1}^{\left( j \right)}} \right) $ | (28) |
$ {\boldsymbol{P}}_{k|k,{\rm{f}}}^{\left( j \right)} = \left[ {{\boldsymbol{I}} - {\boldsymbol{K}}_{{\rm{f}},k}^{\left( j \right)}{\boldsymbol{H}}_{\rm{f}}\left( {{\boldsymbol{m}}_{k|k - 1}^{\left( j \right)}} \right)} \right]{\boldsymbol{P}}_{k|k - 1}^{\left( j \right)} $ | (29) |
其中,相应的增益
$ {\boldsymbol{K}}_{{\rm{f}},k}^{\left( j \right)} = {\boldsymbol{P}}_{k|k - 1}^{\left( j \right)}{\boldsymbol{H}}_{\rm{f}}\left( {{\boldsymbol{m}}_{k|k - 1}^{\left( j \right)}} \right){\left[ {\Xi _{{\rm{f}},k}^{\left( j \right)}} \right]^{ - 1}} $ | (30) |
式中,相应的新息协方差为:
$ \Xi _{{\rm{f}},k}^{\left( j \right)} = {\boldsymbol{H}}_{\rm{f}}\left( {{\boldsymbol{m}}_{k|k - 1}^{\left( j \right)}} \right){\boldsymbol{P}}_{k|k - 1}^{\left( j \right)}{\left[ {{\boldsymbol{H}}_{\rm{f}}\left( {{\boldsymbol{m}}_{k|k - 1}^{\left( j \right)}} \right)} \right]^{\rm{T}}} + {R_{\rm{f}}} $ | (31) |
在分量
$ w_{k|k}^{\left( j \right)}\left( {{{\boldsymbol{z}}_{\rm{f}}}} \right) = - {c_{\rm{f}}}{\cal N}\left( {y_{\rm{f}}\left( {{\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {\boldsymbol{z}} \right)} \right);{\boldsymbol{H}}_{\rm{f}}\left( {{\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {\boldsymbol{z}} \right)} \right){\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {\boldsymbol{z}} \right),\Xi _{{\rm{f}},k}^{\left( j \right)}\left( {\boldsymbol{z}} \right)} \right)w_{k|k}^{\left( j \right)}\left( {\boldsymbol{z}} \right) $ | (32) |
$ {\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {{{\boldsymbol{z}}_{\rm{f}}}} \right) = {\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {\boldsymbol{z}} \right) + {\boldsymbol{G}}_{{\rm{f}},k}^{\left( j \right)}\left( {\boldsymbol{z}} \right)\left( {y_{\rm{f}}\left( {{\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {\boldsymbol{z}} \right)} \right) - {\boldsymbol{H}}_{\rm{f}}\left( {{\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {\boldsymbol{z}} \right)} \right){\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {\boldsymbol{z}} \right)} \right)$ | (33) |
${\boldsymbol{P}}_{k|k}^{\left( j \right)}\left( {{{\boldsymbol{z}}_{\rm{f}}}} \right) = \left[ {{\boldsymbol{I}} - {\boldsymbol{G}}_{{\rm{f}},k}^{\left( j \right)}\left( {\boldsymbol{z}} \right){\boldsymbol{H}}_{\rm{f}}\left( {{\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {\boldsymbol{z}} \right)} \right)} \right]{\boldsymbol{P}}_{k|k}^{\left( j \right)}\left( {\boldsymbol{z}} \right)$ | (34) |
其中,相应的增益
$ {\boldsymbol{G}}_{{\rm{f}},k}^{\left( j \right)}\left( {\boldsymbol{z}} \right) = {\boldsymbol{P}}_{k|k}^{\left( j \right)}\left( {\boldsymbol{z}} \right){\boldsymbol{H}}_{\rm{f}}\left( {{\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {\boldsymbol{z}} \right)} \right){\left[ {\Xi _{{\rm{f}},k}^{\left( j \right)}\left( {\boldsymbol{z}} \right)} \right]^{ - 1}} $ | (35) |
式中
$ \Xi _{{\rm{f}},k}^{\left( j \right)}\left( {\boldsymbol{z}} \right) = {\boldsymbol{H}}_{\rm{f}}\left( {{\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {\boldsymbol{z}} \right)} \right){\boldsymbol{P}}_{k|k}^{\left( j \right)}\left( {\boldsymbol{z}} \right){\left[ {{\boldsymbol{H}}_{\rm{f}}\left( {{\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {\boldsymbol{z}} \right)} \right)} \right]^{\rm{T}}} + {R_{\rm{f}}} $ | (36) |
在式(17)分母中,将杂波强度表示为:
$ \kappa _k\left( {\boldsymbol{z}} \right) = \kappa _{{\rm{c}},k}\left( {{{\boldsymbol{y}}_{\rm{c}}}} \right)\kappa _{{\rm{d}},k}\left( {{{\boldsymbol{y}}_{\rm{d}}}} \right) $ | (37) |
其中,
$ {w_{{\rm{sum}}}} = p_{\rm{D}}\sum\limits_{j = 1}^{{J_{k|k - 1}}} {w_{k|k - 1}^{\left( j \right)}q_k^{\left( j \right)}\left( {\boldsymbol{z}} \right)} - {c_{\rm{f}}}p_{\rm{D}}\sum\limits_{j = 1}^{{J_{k|k - 1}}} {w_{k|k - 1}^{\left( j \right)}q_k^{\left( j \right)}\left( {{{\boldsymbol{z}}_{\rm{f}}}} \right)} $ | (38) |
式中,
$ q_k^{\left( j \right)}\left( {\boldsymbol{z}} \right) = {\cal N}\left( {{\boldsymbol{y}}_{\rm{c}};{\boldsymbol{H}}_{{\rm{c}},k}{\boldsymbol{m}}_{k|k - 1}^{\left( j \right)},{{\mathit{\pmb{Ξ}}}}_{{\rm{c}},k}^{\left( j \right)}} \right){\cal N}\left( {y_{\rm{d}};h_{\rm{d}}\left( {{\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {{{\boldsymbol{y}}_{\rm{c}}}} \right)} \right),{{\mathit{\pmb{Ξ}}}}_{{\rm{d}},k}^{\left( j \right)}\left( {{{\boldsymbol{y}}_{\rm{c}}}} \right)} \right) $ | (39) |
$ q_k^{\left( j \right)}\left( {{{\boldsymbol{z}}_f}} \right) = q_k^{\left( j \right)}\left( {\boldsymbol{z}} \right){\cal N}\left( {y_{\rm{f}}\left( {{\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {\boldsymbol{z}} \right)} \right);{\boldsymbol{H}}_{\rm{f}}\left( {{\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {\boldsymbol{z}} \right)} \right){\boldsymbol{m}}_{k|k}^{\left( j \right)}\left( {\boldsymbol{z}} \right),\Xi _{{\rm{f}},k}^{\left( j \right)}\left( {\boldsymbol{z}} \right)} \right) $ | (40) |
值得指出的是,在量测更新后由于高斯分量数目随时间不断增长,还需要优化。为了便于描述,本节将以上所提出的考虑MDV和多普勒信息的GM-PHD滤波器简记为GM-PHD-D&MDV。当MDV=0时,cf=0,因此,所提的多普勒盲区下GM-PHD滤波器退化为带多普勒信息的GM-PHD(GM-PHD-D)滤波器[19]。代入检测概率到更新强度式(28)中,最终产生了数目成倍增加的高斯分量。换言之,除
仿真的仿真平台是MATLAB 8.0,本节通过与传统GM-PHD-D滤波器[11,12]和GM-PHD滤波器[13](未带多普勒观测)和GM-PHD-D&MDV滤波器的比较来验证所提出的GM-PHD-D&MDV1滤波器的有效性。本节假设在x-y平面内的各目标均为线性高斯动态方程
$ {\boldsymbol{x}}_k = {{\boldsymbol{F}}_{k - 1}}{\boldsymbol{x}}_{k - 1} + {{\boldsymbol{v}}_{k - 1}} $ | (41) |
式中,
$ {{\boldsymbol{F}}_{k - 1}} = \left[ {\begin{array}{*{20}{c}} 1 & {{\tau _k}}\\ 0 & 1 \end{array}} \right] \otimes {{\boldsymbol{I}}_2} $ | (42) |
其中,
In
为单位矩阵,
$ {{\boldsymbol{Q}}_{k - 1}} = \left[ {\begin{array}{*{20}{c}} {\tau _k^4/4} & {\tau _k^3/2}\\ {\tau _k^3/2} & {\tau _k^2} \end{array}} \right] \otimes {\rm{blkdiag}}\left( {\sigma _x^2,\sigma _y^2} \right) $ | (43) |
式中,
假设每个目标的存活概率为
为方便比较,假定所有滤波器起始位置固定。剪枝参数为T=10–5,合并门限为U=4,以及最大高斯分量数目为Jmax=100。提取多目标的门限设置为0.5。初始目标状态分别设为
$ {\gamma _k}\left( x \right) = 0.1\sum\limits_{j = 1}^2 {{\cal N}\left( {{\boldsymbol{x}};{\boldsymbol{m}}_{\gamma ,k}^{\left( j \right)},{\boldsymbol{P}}_{\gamma ,k}^{\left( j \right)}} \right)} $ | (44) |
式中,
杂波、目标的真实航迹以及传感器位置以及两个目标的真实多普勒以及MDVs随时间的变化关系分别如图1和图2所示。可以看到,当k=50时,两目标相对传感器切向飞行,因而,此时的多普勒接近0。此外,随着MDV的增大,目标通过多普勒盲区所需时间变长,导致漏检数目增多。
![]() |
图 1 传感器/目标几何杂波率为12.6×10–6时杂波分布 Fig.1 Sensor/target clutter distribution when the geometric clutter rate is 12.6×10–6 |
![]() |
图 2 两目标的多普勒与不同的MDVs的时间关系 Fig.2 The relationship of two goals Doppler with diffierent MDVs |
当MDV=1时,不同算法的估计结果如图3所示。当目标未处于多普勒盲区时,所有滤波器都能成功跟踪两个目标,其中GM-PHD滤波器性能最差,而其他三者有着相似性能。当目标落入多普勒盲区时,由MDV造成的漏检使得所有滤波器均无法跟踪目标。然而,当目标飞出多普勒盲区后,GM-PHD-D&MDV和GM-PHD-D&MDV1都可再次对目标进行跟踪,而传统GM-PHD和GM-PHD-D滤波器则无法对目标进行再次稳定跟踪。因此,考虑MDV和多普勒信息后的新滤波器能有效解决漏检问题,保持生成目标稳定航迹。
![]() |
图 3 真实航迹与不同算法的估计(MDV=1) Fig.3 Real track and estimation of different algorithms (MDV=1) |
下面利用圆位置误差概率(Circular Position Error Probability, CPEP)对滤波器的航迹丢失性能进行评估,CPEP的数学表达式为:
${\rm{CPE}}{{\rm{P}}_k}\left( r \right) = \frac{1}{{\left| {{{\boldsymbol{X}}_k}} \right|}}\sum\limits_{x \in {X_k}} {{\rho _k}\left( {{\boldsymbol{x}},r} \right)} $ | (45) |
其中,
Xk
是真实目标状态的集合,
H
= [
I
2
02],
假设CPEP半径r=20 m, OSPA中参数的阶p=2和门限c=20 m,图4–图5分别给出了利用Monte Carlo仿真得到的不同MDV值下的算法跟踪性能。从图中可以看出,引入了多普勒量测后的GM-PHD-D&MDV和GM-PHD-D&MDV1滤波器具有相似的CPEP和OSPA性能,且均优于未带多普勒量测的GM-PHD滤波器。在第2阶段,所有滤波器都不能跟踪多普勒盲区下的目标,这是因为高斯分量的权值小于状态提取门限,使得目标状态未被提取。原因是因为GM-PHD-D&MDV和GM-PHD-D&MDV1滤波器可根据式(27)获得高于剪枝门限的权重,从而避免航迹被门限删除。当多普勒盲区遮蔽目标时,传统GM-PHD-D和GM-PHD滤波器不具有有效保存对应目标分量的机制。因此当运动目标重新飞出多普勒盲区时,所提出的GM-PHD-D&MDV和GM-PHD-D&MDV1滤波器可重新跟踪上目标,而传统GM-PHD-D和GM-PHD滤波器却无法实现对目标的再跟踪。
![]() |
图 4 不同滤波器跟踪性能比较(MDV=1) Fig.4 Comparison of tracking performance of different fliters (MDV=1) |
![]() |
图 5 不同滤波器跟踪性能比较(MDV=3) Fig.5 Comparison of tracking performance of different fliters (MDV=3) |
对提出的GM-PHD-D&MDV和GM-PHD-D&MDV1滤波器,需要注意以下3点:(1)GM-PHD-D&MDV1与GM-PHD-D&MDV的性能非常类似,不过,从图6可以看出前者速度快于后者,图6中,绝对时间为每次实验中100步执行的平均时间。比如,当MDV=1时,GM-PHD-D&MDV1仅需11.05 s,而GM-PHD-D&MDV却需22.87 s。相对而言,前者耗时仅是后者的48.29%。因此,GM-PHD-D&MDV1方法可有效降低计算量,性能损失并不明显。(2)随着MDV变大,多普勒盲区遮蔽后的CPEP并未降到第1阶段的最初水平,且第1阶段与第3阶段的CPEP差距增加,这是因为,漏检越多,分量保存难度越大,从而使得盲区遮蔽后目标失跟的概率升高。(3)对于较大的MDV,伪量测更新的分量权重更易高于提取门限,于是,虚假航迹数目将增加,从而,目标进入盲区前,OSPA性能中势分量将增大。换句话说,在MDV较大时,所提滤波器的性能改善的代价是增加了虚假航迹的数目。然而,在MDV较小时,改善跟踪性能的同时并未明显增多虚假航迹。此外,在第3阶段,GM-PHD和GM-PHD-D的OSPA中的定位性能似乎优于GM-PHD-D&MDV和GM-PHD-D&MDV1。实际上,造成这一现象的原因是对应的OSPA势性能接近门限值。从而,GM-PHD-D和GM-PHD滤波器的总体OSPA性能仍然较GM-PHD-D&MDV和GM-PHD-D&MDV1的性能差。
![]() |
图 6 滤波器的绝对时间和相对时间性能比较 Fig.6 The comparison of absolute time and relative time performance of filters |
本文针对多普勒盲区中的多目标跟踪问题,将考虑了MDV的检测概率模型代入到标准GM-PHD更新式中,提出了目标落入多普勒盲区情况下的GM-PHD运动目标跟踪算法,在改善跟踪性能的同时显著减少了虚假航迹数量,且跟踪时间较快。
[1] |
Ronald P S Mahler. Statistical Multisource-Multitarget Information Fusion[M]. Norwood, MA: ARTECH HOUSE, 2007: 45–49.
http://www.sfbtr8.spatial-cognition.de/aigaion/index.php/language/set/en/publications/show/1791 (![]() |
[2] |
范红旗, 卢大威, 刘本源. 多源多目标统计信息融合[M]. 北京: 国防工业出版社, 2013: 12–16.
Fan Hong-qi, Lu Da-wei, and Liu Ben-yuan. Statistical Multisource-Multitarget Information Fusion[M]. Beijing: National Defense Industry Press, 2013: 12–16. ( ![]() |
[3] |
Ouyang C, Ji H-B and Tian Y Improved Gaussian mixture CPHD tracker for multitarget tracking[J].
IEEE Transactions on Signal Processing, 2013, 49(2): 1177-1191. (![]() |
[4] |
Beard M, Vo B-T, Vo B-N, et al. A partially uniform target birth model for Gaussian mixture PHD/CPHD filtering[J].
IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2835-2844. DOI:10.1109/TAES.2013.6621859 (![]() |
[5] |
Beard M, Vo B-T and Vo B-N Multitarget filtering with unknown clutter density using a bootstrap GMCPHD filter[J].
IEEE Signal Processing Letters, 2013, 20(4): 323-326. DOI:10.1109/LSP.2013.2244594 (![]() |
[6] |
B Ristic, D Clark and Gordon N Calibration of multi-target tracking algorithms using non-cooperative targets[J].
IEEE Transactions on Signal Processing, 2013, 7(3): 390-398. (![]() |
[7] |
G Battistelli, Chisci L, Fantacci C, et al. Consensus CPHD filter for distributed multitarget tracking[J].
IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 508-520. DOI:10.1109/JSTSP.2013.2250911 (![]() |
[8] |
Uney M, Clark D and Julier S Distributed fusion of PHD filters via exponential mixture densities[J].
IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 521-531. DOI:10.1109/JSTSP.2013.2257162 (![]() |
[9] |
Vo Ba-Tuong, Vo Ba-Ngu and Cantoni Antonio The cardinality balanced multi-target multi-bernoulli filter and its implementations[J].
IEEE Transactions on Signal Processing, 2009, 57(2): 409-423. DOI:10.1109/TSP.2008.2007924 (![]() |
[10] |
Vo Ba-Ngu, Singh Sumeetpal and Doucet Arnaud Sequential Monte Carlo methods for multi-target filtering with random finite sets[J].
IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224-1245. DOI:10.1109/TAES.2005.1561884 (![]() |
[11] |
Kohlleppel R. Ground moving target tracking of PAMIR detections with a Gaussian mixture-PHD filter[C]. 2011 12th International Radar Symposium, Leipzig, 2011: 193–198.
http://ieeexplore.ieee.org/document/6042117/ (![]() |
[12] |
Kohlleppel R. Ground target tracking with signal adaptive measurement error covariance matrix[C]. 15th IEEE International Conference on Information Fusion, Singapore, 2012: 550–557.
http://publica.fraunhofer.de/dokumente/N-249700.html (![]() |
[13] |
Mallick M, Krishnamurthy V, and Vo B-N. Integrated Tracking, Classification, and Sensor Management[M]. John Wiley & Sons Inc., 2013: 21–23.
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2524472 (![]() |
[14] |
Koch W. On exploiting ‘negative’sensor evidence for target tracking and sensor data fusion[J].
Information Fusion, 2007, 8(1): 28-39. DOI:10.1016/j.inffus.2005.09.002 (![]() |
[15] |
Ulmke M, Erdinc O and Willett P GMTI Tracking via the Gaussian mixture cardinalized probability hypothesis density filter[J].
IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 1821-1833. DOI:10.1109/TAES.2010.5595597 (![]() |
[16] |
Vo B N and Ma W K The Gaussian mixture probability hypothesis density filter[J].
IEEE Transactions on signal processing, 2006, 54(11): 4091-4104. DOI:10.1109/TSP.2006.881190 (![]() |
[17] |
Hu Zijun. A study of multi-target tracking based on random finite set using radar[D]. [Ph.D. dissertation], Xidian University, 2015: 5–9.
(![]() |
[18] |
Vo B. T., Vo B. N. and Cantoni A. Analytic implementations of the cardinalized probability hypothesis density filter[J].
IEEE Trans. Signal Process, 2007, 55(7): 3553-3567. DOI:10.1109/TSP.2007.894241 (![]() |
[19] |
Yoon J H, Kim D Y, Bae S H, et al. Joint initialization and tracking of multiple moving objects using doppler information[J].
IEEE Transactions on Signal Processing, 2011, 59(7): 3447-3452. DOI:10.1109/TSP.2011.2132720 (![]() |