极化SAR作为一种微波成像雷达,能够全天时全天候工作,成为对地观测领域的重要传感器,在城区、森林、农作物、海洋、冰川和自然灾害等应用领域发挥着日益重要的作用[1–12]。不同于光学图像,极化SAR图像难以仅仅通过目视解译进行有效利用,如何准确解译目标的散射机理是上述应用获得成功的关键之一。
极化SAR通过收发一组极化状态正交的电磁波,能够获得目标完整的极化散射矩阵。极化散射矩阵中蕴含的目标丰富散射信息,可通过散射机理建模和解译进行挖掘和提取[13–16]。在过去几十年里,研究人员致力于目标电磁散射的建模与解译,提出了许多有效的理论和技术。起源于Huynen博士上世纪70年代工作[17]的极化目标分解理论,能够有效刻画目标的物理散射机制,在诸多领域获得成功应用。极化目标分解可以分为相干分解和非相干分解两大类。考虑到相干斑的影响,基于极化相干矩阵和极化协方差矩阵等二阶统计量的非相干分解方法更为常用。非相干分解主要包含基于特征值-特征矢量的目标分解方法和基于模型的目标分解方法。基于特征值-特征矢量的目标分解方法以矩阵特征值分解作为其数学基础,分解结果具有唯一性,发展相对成熟[18–20]。由于能够得到具有更清晰物理意义的分解结果,基于模型的目标分解方法在近年受到了更多的关注[21]。在Freeman-Durden分解方法基础上,基于模型的目标分解方法取得了一系列重要进展,包括引入方位补偿技术(也称为去取向处理)[22–24]、非负特征值约束[25]、精细化体散射模型[26,27]、精细化奇次和二次散射模型[28]、同时全参数反演技术[28]、“极化+干涉”分解技术[29,30]等。该领域的其它相关研究进展还可参见文献[31–36]。此外,文献[37]和[21,38]分别对极化目标分解理论的早期和最新进展进行了综述。
雷达目标的后向散射敏感于目标姿态与雷达视线的相对几何关系(本文称这一现象为散射多样性)。对同一目标(例如建筑物),当相对于雷达视线的姿态不同时,其散射特性可以是显著不同的。这种现象给成像雷达目标信息处理与应用造成诸多不便,是当前雷达目标散射机理精细解译和定量应用面临的主要技术瓶颈之一[21]。此外,倾斜地表和倾斜建筑物等目标都可能扭转后向散射回波的极化基,进而产生较大的交叉极化能量。方位向补偿处理通过使目标交叉极化分量最小,能够提升基于模型的目标分解方法的解译性能,改善对倾斜建筑物的解译模糊。然而,对目标极化方位角的估计值实质是所有散射分量的混合值。这种处理并不能始终确保二次散射和奇次散射分量被旋转回零方位角状态,从而使其交叉极化分量为零。正如文献[39]指出,结合方位向补偿处理的传统基于模型的目标分解方法仍然难以有效解译极化方位角超过
另一方面,雷达目标的散射多样性中也蕴含了目标的丰富信息。对雷达目标的散射多样性进行有效挖掘和利用,能够给目标散射机理解译与应用带来新的研究思路。因此,研究团队另辟蹊径,在绕雷达视线方向,提出了极化旋转域的概念,将特定几何关系下获得的目标极化矩阵拓展到绕雷达视线的旋转域,并建立了极化矩阵在旋转域的解析表达式,进而导出了一系列全新的具有明确物理意义的极化振荡参数集和极化角参数集,为目标信息深度挖掘利用奠定基础[40]。在此基础上,提出了统一的极化矩阵旋转理论[40]和极化相干特征旋转域可视化解译理论[41,42],初步建立了在旋转域解译目标散射机理的理论框架,为雷达目标散射机理解译提供了新方法,并在人造目标增强与检测[43]、地物辨识与分类[44]、灾害评估[8]等领域获得成功应用。同时,经典的极化方位角理论[45]和去取向理论[22]也可统一到该理论框架。本文回顾和介绍目标散射旋转域解译的理论和方法,分析导出的极化参数集,并开展应用验证。
2 统一的极化矩阵旋转理论及应用 2.1 极化矩阵旋转处理在水平和垂直极化基
${S} = \left[ {\begin{array}{*{20}{c}}{{S_{{\rm{HH}}}}}&{{S_{{\rm{HV}}}}}\\{{S_{{\rm{VH}}}}}&{{S_{{\rm{VV}}}}}\end{array}} \right]$ | (1) |
其中,
将极化散射矩阵沿雷达视线进行旋转,就可以得到旋转域中的极化散射矩阵为:
${S}\left( \theta \right) = {{R}_2}\left( \theta \right){SR}_2^{\rm{T}}\left( \theta \right)$ | (2) |
其中,
满足互易性条件(
${T} = \left\langle {{{k}_{\rm{P}}}{k}_{\rm{P}}^{\rm{H}}} \right\rangle = \left[ {\begin{array}{*{20}{c}}{{T_{11}}}&{{T_{12}}}&{{T_{13}}}\\{{T_{21}}}&{{T_{22}}}&{{T_{23}}}\\{{T_{31}}}&{{T_{32}}}&{{T_{33}}}\end{array}} \right]$ | (3) |
其中,
将极化相干矩阵拓展到旋转域,可得:
${T}\left( \theta \right) = {{R}_3}\left( \theta \right){TR}_3^{\rm{H}}\left( \theta \right)$ | (4) |
其中,旋转矩阵为
本文以极化相干矩阵为例介绍统一的极化矩阵旋转理论[40]。极化散射矩阵等其它表征形式的极化矩阵可以同理分析。旋转域中极化相干矩阵
${T_{11}}\left( \theta \right) = {T_{11}}\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | (5) |
${T_{12}}\left( \theta \right) = {T_{12}}\cos 2\theta + {T_{13}}\sin 2\theta \quad\quad\quad\quad\quad\quad\quad\quad\quad $ | (6) |
${T_{13}}\left( \theta \right) = - {T_{12}}\sin 2\theta + {T_{13}}\cos 2\theta \quad\quad\quad\quad\quad\quad\quad\quad\; $ | (7) |
$\begin{aligned}{T_{23}}\left( \theta \right) = & \frac{1}{2}\left( {{T_{33}} - {T_{22}}} \right)\sin 4\theta + {\rm{Re}}\left[ {{T_{23}}} \right]\\& \cdot \cos 4\theta + j{\rm{Im}}\left[ {{T_{23}}} \right]\end{aligned}\quad\quad\quad\quad\quad\quad $ | (8) |
${T_{22}}\left( \theta \right) = {T_{22}}{\cos ^2}2\theta + {T_{33}}{\sin ^2}2\theta + {\mathop{\rm Re}\nolimits} \left[ {{T_{23}}} \right]\sin 4\theta \quad\quad $ | (9) |
${T_{33}}\left( \theta \right) = {T_{22}}{\sin ^2}2\theta + {T_{33}}{\cos ^2}2\theta - {\mathop{\rm Re}\nolimits} \left[ {{T_{23}}} \right]\sin 4\theta \quad\quad $ | (10) |
极化相干矩阵副对角线元素的能量项与极化相干特征有关,其表达式分别为:
$\begin{aligned}{\left| {{T_{12}}\left( \theta \right)} \right|^2} = & {\left| {{T_{12}}} \right|^2}{\cos ^2}2\theta + {\left| {{T_{13}}} \right|^2}{\sin ^2}2\theta \\& + {\rm{Re}}\left[ {{T_{12}}T_{13}^*} \right]\sin 4\theta \end{aligned}\quad\quad\quad\quad $ | (11) |
$\begin{aligned}{\left| {{T_{13}}\left( \theta \right)} \right|^2} = & {\left| {{T_{12}}} \right|^2}{\sin ^2}2\theta + {\left| {{T_{13}}} \right|^2}{\cos ^2}2\theta \\& -{\rm{Re}}\left[ {{T_{12}}T_{13}^*} \right]\sin 4\theta \end{aligned} \quad\quad\quad\quad $ | (12) |
$\begin{aligned}{\left| {{T_{23}}\left( \theta \right)} \right|^2} = & \frac{1}{4}{\left( {{T_{33}} - {T_{22}}} \right)^2}{\sin ^2}4\theta + {\rm{R}}{{\rm{e}}^2}\left[ {{T_{23}}} \right]{\cos ^2}4\theta \\& + \frac{1}{2}\left( {{T_{33}} - {T_{22}}} \right){\rm{Re}}\left[ {{T_{23}}} \right]\sin 8\theta + {\rm{I}}{{\rm{m}}^2}\left[ {{T_{23}}} \right]\end{aligned}$ | (13) |
其中,
通过数学变换,可以发现,
$f\left( \theta \right) = A\sin \left[ {\omega \left( {\theta + {\theta _0}} \right)} \right] + B$ | (14) |
其中,A是振荡幅度,B是振荡中心,
这样,旋转域中
在刻画极化相干矩阵的旋转效应方面,振荡参数集蕴含了丰富的信息。本质上讲,这些振荡参数直接与目标旋转域极化散射特性相联系,具备表征地物散射特性的潜能。从表1可以看出,极化相干矩阵的旋转变化量可以分为5组:(1)
${\mathop{\rm Re}\nolimits} \left[ {{T_{12}}\left( \theta \right)} \right] = {\mathop{\rm Re}\nolimits} \left[ {{T_{13}}\left( {\theta + {{π}} /4} \right)} \right] \quad\ \; $ | (15) |
${\mathop{\rm Im}\nolimits} \left[ {{T_{12}}\left( \theta \right)} \right] = {\mathop{\rm Im}\nolimits} \left[ {{T_{13}}\left( {\theta + {{π}} /4} \right)} \right] \quad\ \; $ | (16) |
$\begin{aligned}& {T_{22}}\left( \theta \right) = {T_{33}}\left( {\theta + {{π}} /4} \right),\\& {T_{22}}\left( \theta \right) = {\mathop{\rm Re}\nolimits} \left[ {{T_{23}}\left( {\theta + {{π}} /8} \right)} \right] + B\_{T_{22}}\end{aligned}$ | (17) |
${\left| {{T_{12}}\left( \theta \right)} \right|^2} = {\left| {{T_{13}}\left( {\theta + {{π}} /4} \right)} \right|^2} \quad\quad\quad\, $ | (18) |
其中,
在下面的分析中,主要考察参数
(a) 振荡幅度A
从表1可以看出,相互独立的振荡幅度参数为4个,分别为
$A\_{\left| {{T_{23}}} \right|^2} = \frac{1}{4}{\left( {A\_{T_{22}}} \right)^2}$ | (19) |
将目标极化散射矩阵S的元素代入
$\begin{aligned}A\_{T_{22}} = & \frac{1}{4}{\left( {{T_{33}} - {T_{22}}} \right)^2} + {{\mathop{\rm Re}\nolimits} ^2}\left[ {{T_{23}}} \right]\\ = & \frac{1}{4}{\left( {\left\langle {{{\left| {{S_{{\rm{HH}}}} - {S_{{\rm{VV}}}}} \right|}^2} - 4{{\left| {{S_{{\rm{HV}}}}} \right|}^2}} \right\rangle } \right)^2} \\ & + 4{\left\{ {{\mathop{\rm Re}\nolimits} \left[ {\left\langle {\left( {{S_{{\rm{HH}}}} - {S_{{\rm{VV}}}}} \right)S_{{\rm{HV}}}^ * } \right\rangle } \right]} \right\}^2}\end{aligned}$ | (20) |
对诸如草地和农作物等匀质分布式自然地物,散射对称性条件
$A\_{T_{22}} \approx \frac{1}{4}{\left( {\left\langle {{{\left| {{S_{{\rm{HH}}}} - {S_{{\rm{VV}}}}} \right|}^2} - 4{{\left| {{S_{{\rm{HV}}}}} \right|}^2}} \right\rangle } \right)^2}$ | (21) |
然而,对房屋建筑物等人造目标,一般不满足散射对称性条件。这样,
(b) 振荡中心B
$\begin{aligned}B\_{\left| {{T_{12}}} \right|^2} = & \frac{1}{2}\left( {{{\left| {{T_{12}}} \right|}^2} + {{\left| {{T_{13}}} \right|}^2}} \right) \\ =& \frac{1}{2}\left( {A\_{\mathop{\rm Re}\nolimits} \left[ {{T_{12}}} \right] + A\_{\mathop{\rm Im}\nolimits} \left[ {{T_{12}}} \right]} \right)\end{aligned}$ | (22) |
这样,相互独立且为变量的振荡中心参数为两个。
(c) 角频率
对极化相干矩阵的所有元素,角频率参数均为常数,并有3种取值:
(d) 初始角
根据表1,相互独立的初始角参数
在极化旋转域,有几组有趣的旋转角参数。第1组是不动角参数
(a) 不动角参数
不动角参数
${\theta _{{\rm{sta}}}} = \left\{ \begin{array}{l}{{π}} /\omega - {\theta _0}, \ \ \ \; \; \; {\rm{if}}\;0 \le {\theta _0} < {{π}} /\omega \\ - {{π}} /\omega - {\theta _0},\quad {\rm{if}}\; - {{π}} /\omega \le {\theta _0} < 0\end{array} \right.$ | (23) |
(b) 最小化和最大化角参数
最小化和最大化角能够使对应的矩阵元素在旋转域实现最小化和最大化,即
${\theta _{\min }} \!=\! \left\{ \begin{array}{l}3{{π}} /2\omega - {\theta _0}, \ {\rm{if}}\;{{π}} /2\omega \le {\theta _0} < {{π}} /\omega \\ - {{π}} /2\omega - {\theta _0}, {\rm{if}}\; - {{π}} /\omega \le {\theta _0} < {{π}} /2\omega \end{array} \right.$ | (24) |
同时,得到的最大化角
${\theta _{\max }} \!=\! \left\{ \begin{array}{l}{{π}} /2\omega - {\theta _0},\quad\ {\rm{if}}\;{{π}} /2\omega \le {\theta _0} < {{π}} /\omega \\ - 3{{π}} /2\omega - {\theta _0}, {\rm{if}}\; - {{π}} /\omega \le {\theta _0} < {{π}} /2\omega \end{array} \right. \quad$ | (25) |
此外,导出的最小化角
${\theta _{\min }}\_{T_{33}} \!=\! \frac{1}{4}\left( {{{\tan }^{ - 1}}\frac{{2{\mathop{\rm Re}\nolimits} \left( {{T_{23}}} \right)}}{{{T_{22}} - {T_{33}}}} \pm n{{π}} } \right), \ n \!=\! 0,1\quad$ | (26) |
利用去取向理论使交叉极化分量最小时,可以导出一个角参数,该角参数理论上就等价于极化方位角。这样,从极化矩阵旋转的观点,极化方位角理论和去取向理论均可统一到该极化矩阵旋转理论框架。
(c) 零角参数
零角参数
${\theta _{{\rm{null}}}} = - {\theta _0}$ | (27) |
利用AIRSAR在荷兰Flevoland获得的L波段极化SAR数据验证导出的角参数在地物辨识方面的性能。该研究区域包含多种地物,例如农作物、森林、道路、水域等。农作物区域主要包括茎豆、油菜、豌豆、土豆、紫苜蓿、小麦和甜菜等。极化SAR数据由新近提出的SimiTest方法[46]进行相干斑滤波处理,如图1(a)所示。部分农作物的真值图如图1(b)所示。
针对典型最小化角
极化SAR不同极化通道间的极化相干特征是一种常用的极化特征量,已应用于目标检测与分类等领域[48,49]。目前,对极化相干特征的有效利用仍存在两方面的局限。首先,极化相干特征十分敏感于目标的姿态。以建筑物为例,极化相干特征的取值严重依赖于建筑物取向与极化SAR飞行方向的相对关系。当二者平行时,极化相干特征取值趋近于1;当二者有较大夹角时,极化相干特征取值恶化,远低于1。这样,极化SAR对具有不同取向的建筑物的解译就会产生模糊。其次,对具有散射对称性的农作物等自然地物区域,极化相干特征的取值较小,趋近于0,难以获得实际应用。本节在统一的极化矩阵旋转理论基础上,发展一种极化相干特征旋转域解译与刻画方法。该方法的核心思想是将特定姿态下的极化相干特征拓展到极化旋转域,通过可视化处理和参数化刻画,完整地描述目标极化相干特征在旋转域中的特性,用于精细解译目标在绕雷达视线旋转域中的散射特性,进而用于物理参数反演和目标分类识别等。
对任意极化通道
$\left| {{\gamma _{X - Y}}} \right| = \frac{{\left| {\left\langle {{s_X} \cdot s_Y^ * } \right\rangle } \right|}}{{\sqrt {\left\langle {{s_X} \cdot s_X^ * } \right\rangle } \cdot \sqrt {\left\langle {{s_Y} \cdot s_Y^ * } \right\rangle } }}$ | (28) |
将极化相干特征拓展到旋转域,可得:
$\begin{aligned}\left| {{\gamma _{X - Y}}\left( \theta \right)} \right| = & \frac{{\left| {\left\langle {{s_X}\left( \theta \right) \cdot s_Y^ * \left( \theta \right)} \right\rangle } \right|}}{{\sqrt {\left\langle {{s_X}\left( \theta \right) \cdot s_X^ * \left( \theta \right)} \right\rangle } \cdot \sqrt {\left\langle {{s_Y}\left( \theta \right) \cdot s_Y^ * \left( \theta \right)} \right\rangle } }}, \\ & \theta \in \left[ { - {{π}} ,{{π}} } \right)\end{aligned}$ | (29) |
将旋转域极化相干特征
旋转域极化相干特征的可视化图能够完整表征雷达目标在绕雷达视线旋转域中的散射特性。基于该可视化解译工具,定义以下特征参数进行旋转域参数化刻画:
(1) 原始极化相干特征值
$\left| {{\gamma _{X - Y}}} \right| = \left| {{\gamma _{X - Y}}\left( 0 \right)} \right|$ | (30) |
(2) 旋转域极化相干特征最大值
${\left| {{\gamma _{X - Y}}} \right|_{\max }} = \max \left\{ {\left| {{\gamma _{X - Y}}\left( \theta \right)} \right|} \right\}$ | (31) |
(3) 旋转域极化相干特征最小值
${\left| {{\gamma _{X - Y}}} \right|_{\min }} = \min \left\{ {\left| {{\gamma _{X - Y}}\left( \theta \right)} \right|} \right\}$ | (32) |
(4) 旋转域极化相干度
${\left| {{\gamma _{X - Y}}} \right|_{{\rm{mean}}}} = {\rm{mean}}\left\{ {\left| {{\gamma _{X - Y}}\left( \theta \right)} \right|} \right\}$ | (33) |
(5) 旋转域极化相干起伏度
${\left| {{\gamma _{X - Y}}} \right|_{{\rm{std}}}} = {\rm{std}}\left\{ {\left| {{\gamma _{X - Y}}\left( \theta \right)} \right|} \right\}$ | (34) |
(6) 旋转域极化相干对比度
${\left| {{\gamma _{X - Y}}} \right|_{\max - \min }} = {\left| {{\gamma _{X - Y}}} \right|_{\max }} - {\left| {{\gamma _{X - Y}}} \right|_{\min }}$ | (35) |
(7) 旋转域最大化旋转角
${\theta _{\gamma {\scriptsize{-}}\max }} = \mathop {\arg \max }\limits_{\theta \in \left[ { - {{π}} ,{{π}} } \right)} \left| {{\gamma _{X - Y}}\left( \theta \right)} \right|$ | (36) |
(8) 旋转域最小化旋转角
${\theta _{\gamma {\scriptsize{-}}\min }} = \mathop {\arg \min }\limits_{\theta \in \left[ { - {{π}} ,{{π}} } \right)} \left\{ {\left| {{\gamma _{X - Y}}\left( \theta \right)} \right|} \right\}$ | (37) |
(9) 旋转域极化相干宽度
$\begin{aligned}\rm B{W_\alpha } = &\theta '' - \theta ',{其中}\left| {{\gamma _{X - Y}}\left( {\theta ''} \right)} \right| = \left| {{\gamma _{X - Y}}\left( {\theta '} \right)} \right| \\= &\alpha \cdot {\left| {{\gamma _{X - Y}}} \right|_{\max }}{且}\theta '' > {\theta _{\gamma {\rm{ - }}\max }} > \theta '\end{aligned}$ | (38) |
其中,
考虑水平和垂直极化基
$\begin{aligned}& \left| {{\gamma _{{\rm{HH}} - {\rm{HV}}}}\left( \theta \right)} \right| = \left| {{\gamma _{{\rm{VV}} - {\rm{HV}}}}\left( {\theta + {\rm{{{π}} }}/2} \right)} \right|,\\& \left| {{\gamma _{\left( {{\rm{HH}} + {\rm{VV}}} \right) - \left( {{\rm{HH}} - {\rm{VV}}} \right)}}\left( \theta \right)} \right| = \left| {{\gamma _{\left( {{\rm{HH}} + {\rm{VV}}} \right) - \left( {{\rm{HV}}} \right)}}\left( {\theta + {\rm{{{π}} }}/4} \right)} \right|\end{aligned}$ | (39) |
这样,独立的极化相干特征有4个:
不同极化通道间的极化相干特征是一种常用的极化特征参数。极化相干特征与目标的形状、类别和姿态等密切相关,获得广泛应用。然而,由于严重的去相干效应,大部分农作物等自然植被区域的极化相干特征取值趋近于0,在实际中难以获得有效使用。通过在旋转域中寻求目标与雷达视线间的最优几何关系,能够得到极化相干特征的最大值
对图1中AIRSAR极化SAR数据中的7类已知农作物,随机选择每类农作物的一个样本进行极化相干特征旋转域解译研究,得到的可视化图如图6所示。可以看到,尽管旋转域极化相干特征
针对真值图中的7类农作物,对导出的旋转域极化相干特征刻画参数进行了定量对比分析。各刻画参数对每类农作物的取值的均值和方差图如图7–图13所示。地物1–7分别为茎豆、油菜、豌豆、土豆、紫苜蓿、小麦和甜菜。从图中可以看到,对同一类农作物,各刻画参数的取值均在均值附近,起伏较小。具体而言,图7为原始极化相干特征值、旋转域极化相干特征最大值和最小值的对比图。可以看到,
以基本的欧氏距离作为类间距衡量标准,可以优选出3组2维刻画参数(
为定量分析旋转域特征带来的增量得益,利用支持向量机(SVM)分类器开展了地物分类的对比分析。其中,第1种方法利用常用的旋转不变特征极化熵H、平均
这样,通过极化相干特征旋转域可视化解译与特征提取,就能够有效挖掘目标旋转域隐含特征,为极化SAR的应用研究提供更为丰富和全面的特征集。同时,旋转域解译方法也为极化成像雷达目标解译提供了新的有效途径。
4 结论极化SAR作为对地观测领域的主流成像传感器,发挥着越来越重要的作用。目标散射机理的准确理解与解译是极化SAR数据获得成功应用的关键。针对雷达目标的散射多样性,本文回顾并介绍了在旋转域解译和挖掘目标散射信息的理论方法。其中,统一的极化矩阵旋转理论将极化矩阵拓展到旋转域,并针对各矩阵元素导出了一系列新的极化振荡参数集。在此基础上,将描述不同极化通道间特性的极化相干特征也拓展到旋转域,提出了可视化解译工具并导出了一系列新的刻画参数。上述理论方法和导出的参数在地物辨识与分类等领域获得了实际应用。本文重点就极化相干特征旋转解译方法对农作物极化相干特征增强、可视化解译和类别辨识等开展了对比分析和应用验证。目标旋转域解译理论作为一种新的极化SAR图像解译方法,为目标散射信息深度挖掘、刻画和利用提供了有力支撑,其应用潜力值得更深入的开发。
[1] | Lee J S and Pottier E. Polarimetric Radar Imaging: From Basics to Applications[M]. Boca Raton: CRC Press, 2009. (0) |
[2] | Cloude S R. Polarisation Application in Remote Sensing[M]. Oxford: Oxford University Press, 2009. (0) |
[3] |
金亚秋, 徐丰. 极化散射与SAR遥感信息理论与方法[M]. 北京: 科学出版社, 2008.
Jin Ya-qiu and Xu Feng. Theory and Approach for Polarimetric Scattering and Information Retrieval of SAR Remote Sensing[M]. Beijing: Science Press, 2008. (0) |
[4] |
张红, 王超, 刘萌, 等. 极化SAR理论、方法与应用[M]. 北京: 科学出版社, 2015.
Zhang Hong, Wang Chao, Liu Meng, et al.. Theory, Approach and Application of Polarimetric SAR[M]. Beijing: Science Press, 2015. (0) |
[5] | Dell’Acqua F and Gamba P. Remote sensing and earthquake damage assessment: Experiences, limits, and perspectives[J]. Proceedings of the IEEE, 2012, 100(10): 2876-2890. DOI:10.1109/JPROC.2012.2196404 (0) |
[6] | Sato M, Chen S W and Satake M. Polarimetric SAR analysis of Tsunami damage following the March 11, 2011 East Japan Earthquake[J]. Proceedings of the IEEE, 2012, 100(10): 2861-2875. DOI:10.1109/JPROC.2012.2200649 (0) |
[7] | Chen S W and Sato M. Tsunami damage investigation of built-up areas using multitemporal spaceborne full polarimetric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4): 1985-1997. DOI:10.1109/TGRS.2012.2210050 (0) |
[8] | Chen S W, Wang X S and Sato M. Urban damage level mapping based on scattering mechanism investigation using fully polarimetric SAR data for the 3.11 East Japan earthquake[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 6919-6929. DOI:10.1109/TGRS.2016.2588325 (0) |
[9] |
吴一戎. 多维度合成孔径雷达成像概念[J].
雷达学报, 2013, 2(2): 135-142. Wu Yi-rong. Concept of multidimensional space joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135-142. (0) |
[10] |
洪文. 圆迹SAR成像技术研究进展[J].
雷达学报, 2012, 1(2): 124-135. Hong Wen. Progress in circular SAR imaging technique[J]. Journal of Radars, 2012, 1(2): 124-135. (0) |
[11] |
张杰, 张晰, 范陈清, 等. 极化SAR在海洋探测中的应用与探讨[J].
雷达学报, 2016, 5(6): 596-606. Zhang Jie, Zhang Xi, Fan Chen-qing, et al.. Discussion on application of polarimetric synthetic aperture radar in marine surveillance[J]. Journal of Radars, 2016, 5(6): 596-606. (0) |
[12] |
许成斌, 周伟, 丛瑜, 等. 基于峰值区域的高分辨率极化SAR舰船目标特征分析与鉴别[J].
雷达学报, 2015, 4(3): 367-373. Xu Cheng-bin, Zhou Wei, Cong Yu, et al.. Ship analysis and detection in high-resolution Pol-SAR imagery based on peak zone[J]. Journal of Radars, 2015, 4(3): 367-373. (0) |
[13] |
王雪松. 雷达极化技术研究现状与展望[J].
雷达学报, 2016, 5(2): 119-131. Wang Xue-song. Status and prospects of radar polarimetry techniques[J]. Journal of Radars, 2016, 5(2): 119-131. (0) |
[14] |
杨汝良, 戴博伟, 李海英. 极化合成孔径雷达极化层次和系统工作方式[J].
雷达学报, 2016, 5(2): 132-142. Yang Ru-liang, Dai Bo-wei and Li Hai-ying. Polarization hierarchy and system operating architecture for polarimetric synthetic aperture radar[J]. Journal of Radars, 2016, 5(2): 132-142. (0) |
[15] |
代大海, 廖斌, 肖顺平, 等. 雷达极化信息获取与处理的研究进展[J].
雷达学报, 2016, 5(2): 143-155. Dai Da-hai, Liao Bin, Xiao Shun-ping, et al.. Advancements on radar polarization information acquisition and processing[J]. Journal of Radars, 2016, 5(2): 143-155. (0) |
[16] |
赵春雷, 王亚梁, 阳云龙, 等. 雷达极化信息获取及极化信号处理技术研究综述[J].
雷达学报, 2016, 5(6): 620-638. Zhao Chun-lei, Wang Ya-liang, Yang Yun-long, et al.. Review of radar polarization information acquisition and polarimetric signal processing techniques[J]. Journal of Radars, 2016, 5(6): 620-638. (0) |
[17] | Huynen J R. Phenomenological Theory of Radar Targets[D]. [Ph.D. dissertation], Delft University of Technology, 1970. (0) |
[18] | Cloude S R and Pottier E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68-78. DOI:10.1109/36.551935 (0) |
[19] | Touzi R. Target scattering decomposition in terms of roll-invariant target parameters[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(1): 73-84. DOI:10.1109/TGRS.2006.886176 (0) |
[20] | Paladini R, Martorella M and Berizzi F. Classification of man-made targets via invariant coherency-matrix eigenvector decomposition of polarimetric SAR/ISAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3022-3034. DOI:10.1109/TGRS.2011.2116121 (0) |
[21] | Chen S W, Li Y Z, Wang X S, et al.. Modeling and interpretation of scattering mechanisms in polarimetric synthetic aperture radar: Advances and perspectives[J]. IEEE Signal Processing Magazine, 2014, 31(7): 79-89. (0) |
[22] | Xu F and Jin Y Q. Deorientation theory of polarimetric scattering targets and application to terrain surface classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(10): 2351-2364. DOI:10.1109/TGRS.2005.855064 (0) |
[23] | An W T, Cui Y and Yang J. Three-component model-based decomposition for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6): 2732-2739. DOI:10.1109/TGRS.2010.2041242 (0) |
[24] | Yamaguchi Y, Sato A, Boerner W M, et al.. Four-component scattering power decomposition with rotation of coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2251-2258. DOI:10.1109/TGRS.2010.2099124 (0) |
[25] | Van Zyl J J, Arii M and Kim Y. Model-based decomposition of polarimetric SAR covariance matrices constrained for nonnegative eigenvalues[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3452-3459. DOI:10.1109/TGRS.2011.2128325 (0) |
[26] | Arii M, Van Zyl J J and Kim Y. Adaptive model-based decomposition of polarimetric SAR covariance matrices[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 1104-1113. DOI:10.1109/TGRS.2010.2076285 (0) |
[27] | Neumann M, Ferro-Famil L and Reigber A. Estimation of forest structure, ground, and canopy layer characteristics from multibaseline polarimetric interferometric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1086-1104. DOI:10.1109/TGRS.2009.2031101 (0) |
[28] | Chen S W, Wang X S, Xiao S P, et al.. General polarimetric model-based decomposition for coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1843-1855. DOI:10.1109/TGRS.2013.2255615 (0) |
[29] | Ballester-Berman J D and Lopez-Sanchez J M. Applying the Freeman-Durden decomposition concept to polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 466-479. DOI:10.1109/TGRS.2009.2024304 (0) |
[30] | Chen S W, Wang X S, Li Y Z, et al.. Adaptive model-based polarimetric decomposition using PolInSAR coherence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1705-1718. DOI:10.1109/TGRS.2013.2253780 (0) |
[31] | Wang C L, Yu W D, Wang R, et al.. Comparison of nonnegative eigenvalue decompositions with and without reflection symmetry assumptions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2278-2287. DOI:10.1109/TGRS.2013.2259177 (0) |
[32] | Li H Z, Wang C, Zhang H, et al.. A unified three-component scattering model for polarimetric coherent target decomposition[J]. International Journal of Remote Sensing, 2012, 33(9): 2868-2891. DOI:10.1080/01431161.2011.622728 (0) |
[33] | Zhu F Y, Zhang Y H and Li D. An extension of a complete model-based decomposition of polarimetric SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 287-291. DOI:10.1109/LGRS.2015.2511076 (0) |
[34] | Deng L and Yan Y N. Improving the Yamaguchi4 decomposition method using selective polarization orientation compensation[J]. Canadian Journal of Remote Sensing, 2016, 42(2): 125-135. DOI:10.1080/07038992.2016.1160774 (0) |
[35] | Zou B, Zhang Y, Cao N, et al.. A four-component decomposition model for PolSAR data using asymmetric scattering component[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(3): 1051-1061. DOI:10.1109/JSTARS.2014.2380151 (0) |
[36] | Wang Y H, Liu H W and Jiu B. PolSAR coherency matrix decomposition based on constrained sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5906-5922. DOI:10.1109/TGRS.2013.2293663 (0) |
[37] | Cloude S R and Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(3): 498-518. (0) |
[38] |
张腊梅, 段宝龙, 邹斌. 极化SAR图像目标分解方法的研究进展[J].
电子与信息学报, 2016, 38(12): 3289-3297. Zhang Lamei, Duan Baolong and Zou Bin. Research development on target decomposition method of polarimetric SAR image[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3289-3297. (0) |
[39] | Chen S W, Ohki M, Shimada M, et al.. Deorientation effect investigation for model-based decomposition over oriented built-up areas[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 273-277. (0) |
[40] | Chen S W, Wang X S and Sato M. Uniform polarimetric matrix rotation theory and its applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4756-4770. DOI:10.1109/TGRS.2013.2284359 (0) |
[41] | Chen S W, Li Y Z, and Wang X S. A visualization tool for polarimetric SAR data investigation[C]. The 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 2016: 579–582. (0) |
[42] | Chen S W and Wang X S. Polarimetric coherence pattern: A visualization tool for PolSAR data investigation[C]. The IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016: 7509–7512. (0) |
[43] | Xiao S P, Chen S W, Chang Y L, et al.. Polarimetric coherence optimization and its application for manmade target extraction in PolSAR data[J]. IEICE Transactions on Electronics, 2014, 97(6): 566-574. (0) |
[44] | Chen S W, Li Y Z and Wang X S. Crop discrimination based on polarimetric correlation coefficients optimization for PolSAR data[J]. International Journal of Remote Sensing, 2015, 36(16): 4233-4249. DOI:10.1080/01431161.2015.1079345 (0) |
[45] | Lee J S, Schuler D L, Ainsworth T L, et al.. On the estimation of radar polarization orientation shifts induced by terrain slopes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(1): 30-41. DOI:10.1109/36.981347 (0) |
[46] | Chen S W, Wang X S and Sato M. PolInSAR complex coherence estimation based on covariance matrix similarity test[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4699-4710. DOI:10.1109/TGRS.2012.2192937 (0) |
[47] |
陶臣嵩, 陈思伟, 李永祯, 等. 结合旋转域极化特征的极化SAR地物分类[J].
雷达学报, 2017, 6(5): 524-532. Tao Chensong, Chen Siwei, Li Yongzhen, et al.. Polarimetric SAR terrain classification using polarimetric feature derived from rotation domain[J]. Journal of Radars, 2017, 6(5): 524-532. DOI:10.12000/JR16131 (0) |
[48] | Ainsworth T L, Schuler D L and Lee J S. Polarimetric SAR characterization of man-made structures in urban areas using normalized circular-pol correlation coefficients[J]. Remote Sensing of Environment, 2008, 112(6): 2876-2885. DOI:10.1016/j.rse.2008.02.005 (0) |
[49] | Yamaguchi Y, Yamamoto Y, Yamada H, et al.. Classification of terrain by implementing the correlation coefficient in the circular polarization basis using X-band POLSAR data[J]. IEICE Transactions on Communications, 2008, E91B(1): 297-301. (0) |