Abstract:Object reconstruction is of vital importance in Synthetic Aperture Radar (SAR) image analysis. In this paper, we propose a novel method based on shape prior to reconstruct aircraft in high resolution SAR images. The method mainly contains two stages. In the shape prior modeling stage, a generative deep learning method is used to model deep shape priors; a novel framework is then proposed in the reconstruction stage, which integrates the shape priors in the process of reconstruction. Specifically, to address the issue of object rotation, a novel pose estimation method is proposed to obtain candidate poses, which avoids making an exhaustive search for each pose. In addition, an energy function combining a scattering region term and a shape prior term is proposed; this is optimized via an iterative optimization algorithm to achieve the goal of object reconstruction. To the best of our knowledge, this is the first attempt made to reconstruct objects with complex shapes in SAR images using deep shape priors. Experiments are conducted on the dataset acquired by TerraSAR-X and results demonstrate the accuracy and robustness of the proposed method.
窦方正, 刁文辉, 孙 显, 张 跃, 付 琨. 基于深度形状先验的高分辨率SAR飞机目标重建[J]. 雷达学报, 2017, 6(5): 503-513.
Dou Fangzheng, Diao Wenhui, Sun Xian, Zhang Yue, Fu Kun. Aircraft Reconstruction in High Resolution SAR Images Using Deep Shape Prior. JOURNAL OF RADARS, 2017, 6(5): 503-513.
邓云凯, 赵凤军, 王宇. 星载SAR技术的发展趋势及应用浅析[J]. 雷达学报, 2012, 1(1):1-10.Deng Yunkai, Zhao Fengjun, and Wang Yu. Brief analysis on the development and application of spaceborne SAR[J]. Journal of Radars, 2012, 1(1):1-10.
[2]
Chen Jiehong, Zhang Bo, and Wang Chao. Backscattering feature analysis and recognition of civilian aircraft in TerraSAR-X images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4):796-800.[DOI:10.1109/LGRS.2014.2362845]
[3]
Chang Y L, Chiang C Y, and Chen K S. SAR image simulation with application to target recognition[J]. Progress in Electromagnetics Research, 2011, 119:35-57.[DOI:10.2528/PIER11061507]
[4]
Tang Kan, Sun Xian, Sun Hao, et al.. A geometrical-based simulator for target recognition in high-resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5):958-962.[DOI:10.1109/LGRS.2012.2187426]
[5]
Zhang Yue, Sun Xian, Thiele A, et al.. Stochastic geometrical model and Monte Carlo optimization methods for building reconstruction from InSAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108:49-61.[DOI:10.1016/j.isprsjprs.2015.06.004]
[6]
王思雨, 高鑫, 孙皓, 郑歆慰, 孙显. 基于卷积神经网络的高分辨率SAR图像飞机目标检测方法[J]. 雷达学报, 2017, 6(2):195-203.Wang Siyu, Gao Xin, Sun Hao, et al. An aircraft detection method based on convolutional neural networks in high-resolution sar images[J]. Journal of Radars, 2017, 6(2):195-203
[7]
杜康宁, 邓云凯, 王宇, 李宁. 基于多层神经网络的中分辨SAR图像时间序列建筑区域提取[J]. 雷达学报, 2016, 5(4):410-418.Du Kangning, Deng Yunkai, Wang Yu, et al.. Medium Resolution SAR Image Time-series Built-up Area Extraction Based on Multilayer Neural Network[J]. Journal of Radars, 2016, 5(4):410-418.
[8]
田壮壮, 占荣辉, 胡杰民, 张军. 基于卷积神经网络的SAR图像目标识别研究[J]. 雷达学报, 2016, 5(3):320-325.Tian Zhuangzhuang, Zhan Ronghui, Hu Jiemin, et al.. SAR ATR Based on Convolutional Neural Network[J]. Journal of Radars, 2016, 5(3):320-325.
[9]
徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2):136-148.Xu Feng, Wang Haipeng, Jin Yaqiu. Deep learning as applied in sar target recognition and terrain classification[J]. Journal of Radars, 2017, 6(2):136-148.
[10]
Salakhutdinov R and Hinton G. Deep Boltzmann machines[J]. Journal of Machine Learning Research, 2009, 5(2):448-455.
[11]
Zhang Zhengdong, Liang Xiao, Ganesh A, et al.. TILT:Transform invariant low-rank textures[C]. Proceedings of Asian Conference on Computer Vision, Berlin, Heidelberg, 2010:314-328.
[12]
Goldstein T, Bresson X, and Osher S. Geometric applications of the split bregman method:Segmentation and surface reconstruction[J]. Journal of Scientific Computing, 2010, 45(1):272-293.
[13]
Eslami S M A, Heess N, Williams C K I, et al.. The shape boltzmann machine:A strong model of object shape[J]. International Journal of Computer Vision, 2014, 107(2):155-176.[DOI:10.1007/s11263-013-0669-1]
[14]
Liu Ge, Sun Xian, Fu Kun, et al.. Interactive geospatial object extraction in high resolution remote sensing images using shape-based global minimization active contour model[J]. Pattern Recognition Letters, 2013, 34(10):1186-1195.[DOI:10.1016/j.patrec.2013.03.031]
[15]
Chen Fei, Yu Huimin, Hu R, et al.. Deep learning shape priors for object segmentation[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 2013:1870-1877.
[16]
Kuttikkad S and Chellappa R. Non-gaussian CFAR techniques for target detection in high resolution SAR images[C]. Proceedings of IEEE International Conference on Image Processing, Austin, TX, USA, 1994:910-914.
[17]
Cremers D, Schmidt F R, and Barthel F. Shape priors in variational image segmentation:Convexity, Lipschitz continuity and globally optimal solutions[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 2008:1-6.
[18]
Jones Ⅲ G and Bhanu B. Recognizing articulated objects in SAR images[J]. Pattern Recognition, 2001, 34(2):469-485.[DOI:10.1016/S0031-3203(99)00218-6]
[19]
Boykov Y Y and Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images[C]. Proceedings of IEEE International Conference on Computer Vision, Vancouver, BC, Canada, 2001:105-112.
[20]
Wu Qichang, Diao Wenhui, Dou Fangzheng, et al.. Shape-based object extraction in high-resolution remote-sensing images using deep Boltzmann machine[J]. International Journal of Remote Sensing, 2016, 37(24):6012-6022.[DOI:10.1080/01431161.2016.1253897]