Abstract:An effective way to achieve High Resolution and Wide Swath (HRWS) imaging capability is the multi-channel technique in azimuth. Improved resolution and swath can dramatically increase the volume of echo data in the SAR system. However, the onboard data storage and data-transmission bandwidth are limited, so data compression technique is typically used to reduce the volume of echo data. To study the effect of raw data compression on the azimuth multi-channel SAR system, in this paper, we establish a multi-channel SAR signal model based on data compression. We then derive and analyze the effects of data compression on the Signal-to-Noise Ratio (SNR) scaling factor of the multi-channel SAR system and quantization noise. Finally, we verify the validity of the proposed model and analysis results using simulation and real data and discuss the effect of data compression on the Peek-to-Ghost Ratio (PGR). The results of this paper provide an important theoretical basis for the choice of compression method in the multi-channel SAR system.
赵 耀, 邓云凯, 王 宇, 李 宁, 王 伟. 原始数据压缩对方位向多通道SAR系统影响研究[J]. 雷达学报, 2017, 6(4): 397-407.
Zhao Yao, Deng Yunkai, Wang Yu, Li Ning, Wang Wei. Study of Effect of Raw Data Compression on Azimuth Multi-channel SAR System. JOURNAL OF RADARS, 2017, 6(4): 397-407.
Deng Yun-kai, Zhao Feng-jun, and Wang Yu. Brief analysis on the development and application of spaceborne SAR[J]. Journal of Radars, 2012, 1(1): 1-10.
[3]
Currie A and Brown M A. Wide-swath SAR[J]. IEE Proceedings F-Radar and Signal Processing, 1992, 139(2): 122-135. DOI:10.1049/ip-f-2.1992.0016
[4]
Currie A. Wide-swath SAR imaging with multiple azimuth beams[C]. Proceedings of IEE Colloquium on Synthetic Aperture Radar, London, UK, 1989: 3/1-3/4.
[5]
Currie A and Hall C D. A synthetic aperture radar technique for the simultaneous provision of high-resolution wide-swath coverage[C]. Proceedings 1990 Military Microwaves Conference, 1990: 539-544.
[6]
Gebert N, Krieger G, and Moreira A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564-592. DOI:10.1109/TAES.2009.5089542
[7]
Kim J H, Younis M, Prats-Iraola P, et al.. First spaceborne demonstration of digital beamforming for azimuth ambiguity suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 579-590. DOI:10.1109/TGRS.2012.2201947
[8]
Kwok R and Johnson W T K. Block adaptive quantization of Magellan SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27(4): 375-383. DOI:10.1109/36.29557
[9]
Max J. Quantizing for minimum distortion[J]. IRE Transactions on Information Theory, 1960, 6(1): 7-12. DOI:10.1109/TIT.1960.1057548
[10]
McLeod I H and Cumming I G. On-board encoding of the ENVISAT wave mode data[C]. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Firenze, Italy, 1995, 3: 1681-1683.
[11]
Martone M, Bräutigam B, and Krieger G. Quantization effects in TanDEM-X data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 583-597. DOI:10.1109/TGRS.2014.2325976
[12]
Pavia P, Spera G, Venturini R, et al.. CSG satellite design and performance[C]. Proceedings of the 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 2016: 1023-1026.
[13]
McLeod I H, Cumming I G, and Seymour M S. ENVISAT ASAR data reduction: Impact on SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(2): 589-602. DOI:10.1109/36.662741
[14]
Benz U, Strodl K, and Moreira A. A comparison of several algorithms for SAR raw data compression[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(5): 1266-1276. DOI:10.1109/36.469491
Tan Hong, Qiu Xiao-lan, and Hong Jun. Effect of raw data compression on polarimetric information of quad polarimetric SAR[J]. Systems Engineering and Electronics, 2015, 37(9): 2029-2034. DOI:10.3969/j.issn.1001-506X.2015.09.12
Xing Kun, Deng Yun-kai, and Qi Hai-ming. Study of effect of raw data compression on space-borne SAR/GMTI velocity measurement[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1321-1326.
[17]
Krieger G, Gebert N, and Moreira A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260-264. DOI:10.1109/LGRS.2004.832700
[18]
Jing Wei, Xing Meng-dao, Qiu Cheng-wei, et al.. Unambiguous reconstruction and high-resolution imaging for multiple-channel SAR and airborne experiment results[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(1): 102-106. DOI:10.1109/LGRS.2008.2008825
[19]
Lin Y P and Vaidyanathan P P. Periodically nonuniform sampling of bandpass signals[J]. IEEE Transactions on Circuits and Systems Ⅱ: Analog and Digital Signal Processing, 1998, 45(3): 340-351. DOI:10.1109/82.664240
[20]
Jenq Y C. Perfect reconstruction of digital spectrum from nonuniformly sampled signals[J]. IEEE Transactions on Instrumentation and Measurement, 1997, 46(3): 649-652. DOI:10.1109/19.585419
Qiu Xiao-lan, Lei Bin, Ge Yun-ping, et al.. Performance evaluation of two compression methods for SAR raw data[J]. Journal of Electronics & Information Technology, 2010, 32(9): 2268-2272.
[22]
Algra T. Data compression for operational SAR missions using entropy-constrained block adaptive quantisation[C]. Proceedings of 2002 IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002, 2: 1135-1139.
Gao Can-guan, Deng Yun-kai, Feng Jin, et al.. Analysis on the non-uniform sampling of displaced phase center multiple-beam SAR systems[J]. Journal of Electronics & Information Technology, 2012, 34(6): 1305-1310.
Li Xin, Qi Hai-ming, Hua Bin, et al.. Theoretical analysis on target radiometric error resulting from spaceborne SAR raw data compression[J]. Journal of Electronics & Information Technology, 2011, 33(8): 1845-1850.