Abstract:To achieve high-resolution wide-swath imaging, the use of multichannel techniques in azimuth is effective for spaceborne Synthetic Aperture Radar (SAR). For azimuth multichannel systems, the signal in azimuth is nonuniformly sampled if the uniform sampling condition related to Pulse Repetition Frequency (PRF) is not satisfied, which makes it important to reconstruct the azimuth signal prior to image formation. In this study, to solve the azimuth signal reconstruction problem in multichannel SAR, we propose the innovative use of a multiframe super-resolution method in Digital Image Processing (DIP) and summarize the general multiframe super-resolution process. Our simulation results and real data experiments verify the effectiveness of the proposed method, which demonstrates some advantages in complexity performance. By establishing linkages between the problem of signal reconstruction of nonuniformly sampled signals and the multiframe super-resolution concept, we provide a new approach to this traditional signal reconstruction problem.
赵庆超, 张 毅, 王 宇, 王 伟, 王翔宇. 基于多帧超分辨率的方位向多通道星载SAR非均匀采样信号重建方法[J]. 雷达学报, 2017, 6(4): 408-419.
Zhao Qingchao, Zhang Yi, Wang Robert, Wang Wei, Wang Xiangyu. Signal Reconstruction Approach for Multichannel SAR in Azimuth Based on Multiframe Super resolution. JOURNAL OF RADARS, 2017, 6(4): 408-419.
Deng Yun-kai, Zhao Feng-jun, and Wang Yu. Brief analysis on the development and application of spaceborne SAR[J]. Journal of Radars, 2012, 1(1): 1-10.
[2]
Lee J S and Pottier E. 洪文, 李洋, 尹嫱, 译. 极化雷达成像基础与应用[M]. 北京: 电子工业出版社, 2013: 199-223.
Lee J S and Pottier E. Hong Wen, Li Yang, and Yin Qiang, Trans. Polarimetric Radar Imaging From Basics to Applications[M]. Beijing: Publishing House of Electronics Industry, 2013: 199-223.
[3]
Wiley C A. Synthetic aperture radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, AES-21(3): 440-443. DOI:10.1109/TAES.1985.310578
[4]
Freeman A, Johnson W T K, Huneycutt B, et al.. The “myth” of the minimum SAR antenna area constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 320-324. DOI:10.1109/36.823926
[5]
Currie A and Brown M A. Wide-swath SAR[J]. IEE Proceedings F-Radar and Signal Processing, 1992, 139(2): 122-135. DOI:10.1049/ip-f-2.1992.0016
[6]
Younis M, Fischer C, and Wiesbeck W. Digital beamforming in SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7): 1735-1739. DOI:10.1109/TGRS.2003.815662
[7]
Mittermayer J and Runge H. Conceptual studies for exploiting the TerraSAR-X dual receive antenna[C]. Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 2140-2142.
[8]
Krieger G, Gebert N, and Moreira A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260-264. DOI:10.1109/LGRS.2004.832700
Qi Wei-kong and Yu Wei-dong. Reconstruction of nonuniform azimuth sampling signals of space borne SAR DPC-MAB technique based on filter banks [J]. Systems Engineering and Electronics, 2008, 30(7): 1218-1222.
[10]
Li Zhen-fang, Wang Hong-yang, Su Tao, et al.. Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(1): 82-86. DOI:10.1109/LGRS.2004.840610
Chen Qian, Deng Yun-kai, Liu Ya-dong, et al.. SAR azimuth signal reconstruction based on adaptive filtering for the DPC-MAB SAR system[J]. Journal of Electronics & Information Technology, 2012, 34(6): 1331-1336.
[12]
Sikaneta I, Gierull C H, and Cerutti-Maori D. Optimum signal processing for multichannel SAR: With application to high-resolution wide-swath imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6095-6109. DOI:10.1109/TGRS.2013.2294940
[13]
Sikaneta I, Cerutti-Maori D, Klare J, et al.. Comparison of multi-channel high-resolution wide-swath SAR processing methods[C]. Proceedings of 2014 IEEE International Geoscience and Remote Sensing Symposium, Quebec, Canada, 2014: 3834-3837.
[14]
Liu Guang-yan, Wang You-lin, and Lin You-quan. Unambiguous reconstruction and imaging of nonuniform sampling SAR signals[C]. Proceedings of the 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 2007: 253-256.
[15]
Zhao Shuo, Wang R, Deng Yun-kai, et al.. Modifications on multichannel reconstruction algorithm for SAR processing based on periodic nonuniform sampling theory and nonuniform fast fourier transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11): 4998-5006. DOI:10.1109/JSTARS.2015.2421303
[16]
Siu W C and Hung K W. Review of image interpolation and super-resolution[C]. Proceedings of 2012 Asia-Pacific Signal & Information Processing Association Annual Summit and Conference, Hollywood, CA, 2012: 1-10.
Liu Peng, Liu Ding-sheng and Li Guo-qing. Frequency field super-resolution reconstruction based on estimation offset of matrix rank[J]. Computer Engineering, 2009, 35(15): 29-31, 34. DOI:10.3969/j.issn.1000-3428.2009.15.010
[19]
Jiang Jun-jun, Ma Xiang, Chen Chen, et al.. Single image super-resolution via locally regularized anchored neighborhood regression and nonlocal means[J]. IEEE Transactions on Multimedia, 2017, 19(1): 15-26. DOI:10.1109/TMM.2016.2599145
[20]
Tsai R Y and Huang T S. Multiframe image restoration and registration[J]. Advances in Computer Vision and Image Processing, 1984, 1(2): 317-339.
[21]
Oppenheim A V, Willsky A S, and Nawab S H. Signals and Systems[M]. Second Edition, Beijing: Publishing House of Electronics Industry, 2015: 190-200.
[22]
Proakis J G and Manolaki D G. 方艳梅, 刘永清, 译. 数字信号处理: 原理、算法与应用[M]. 第4版, 北京: 电子工业出版社, 2014: 332-350.
Proakis J G and Manolaki D G. Fang Yan-mei and Liu Yong-qing, Trans. Digital Signal Processing: Principles, Algorithms, and Applications[M]. Fourth Edition, Beijing: Publishing House of Electronics Industry, 2014: 332-350.