Abstract:With years of development and accumulation, a considerable amount of research has focused on micro-motion, an important auxiliary feature in radar target detection and recognition. With the recent rise of terahertz, micro-motion feature extraction in the terahertz region has increasingly highlighted its advantages. Herein, we systematically surveyed the recent research on terahertz radar micro-motion feature extraction and discussed micro-motion feature analysis, micro-motion feature extraction, and micro-motion target imaging. And then we emphatically introduced the work of our research team, including the theoretical and experimental research on micro-motion feature analysis, micro-motion feature extraction and high-resolution/high-frame micro-motion target imaging. Furthermore, we analyzed the growing trend of micro-motion feature extraction in the terahertz region, and pointed out the new technology directions worth to be studied further and the technical challenges to be solved.
杨 琪, 邓 彬, 王宏强, 秦玉亮. 太赫兹雷达目标微动特征提取研究进展[J]. 雷达学报, 2018, 7(1): 22-45.
Yang Qi, Deng Bin, Wang Hongqiang, Qin Yuliang. Advancements in Research on Micro-motion Feature Extraction in the Terahertz Region. JOURNAL OF RADARS, 2018, 7(1): 22-45.
Federici J F, Schulkin B, Huang F, et al.. THz imaging and sensing for security applications—explosives, weapons and drugs[J]. Semiconductor Science Technology, 2005, 20(7): S266-S280. DOI:10.1088/0268-1242/20/7/018
[2]
Redo-Sanchez A and Zhang X C. Terahertz science and technology trends[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(2): 260-269. DOI:10.1109/JSTQE.2007.913959
[3]
Van Exter M and Grischkowsky D R. Characterization of an optoelectronic terahertz beam system[J]. IEEE Transactions on Microwave Theory and Techniques, 1990, 38(11): 1684-1691. DOI:10.1109/22.60016
Yang Guang-kun, Yuan Bin, Xie Dong-yan, et al.. Analysis on the use of THz technology in the military application[J]. Laser & Infrared, 2011, 41(4): 376-380. DOI: 10.3969/j.issn.1001-5078.2011.04.003. DOI:10.3969/j.issn.1001-5078.2011.04.003
Wang Yi-feng and Mao Jing-xiang. Analysis on development status of terahertz technology and application prospect[J]. Electro-optic Technology Application, 2008, 23(1): 1-4. DOI: 10.3969/j.issn.1673-1255.2008.01.001. DOI:10.3969/j.issn.1673-1255.2008.01.001
[6]
Caris M, Stanko S, Palm S, et al.. 300 GHz radar for high resolution SAR and ISAR applications[C]. Proceedings of the 16th International Radar Symposium, Dresden, 2015: 577-580.
[7]
Wang R J, Deng B, Qin Y L, et al.. Bistatic terahertz radar azimuth-elevation imaging based on compressed sensing[J]. IEEE Transactions on Terahertz Science and Technology, 2014, 4(6): 702-713. DOI:10.1109/TTHZ.2014.2348413
[8]
Liang M Y, Zhang C L, Zhao R, et al.. Experimental 0.22 THz stepped frequency radar system for ISAR imaging[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2014, 35(9): 780-789. DOI:10.1007/s10762-014-0079-7
[9]
Zhang B, Pi Y M, and Li J. Terahertz imaging radar with inverse aperture synthesis techniques: System structure, signal processing, and experiment results[J]. IEEE Sensors Journal, 2015, 15(1): 290-299. DOI:10.1109/JSEN.2014.2342495
[10]
Sun Z Y, Li C, Gu S M, et al.. Fast three-dimensional image reconstruction of targets under the illumination of terahertz Gaussian beams with enhanced phase-shift migration to improve computation efficiency[J]. IEEE Transactions on Terahertz Science and Technology, 2014, 4(4): 479-490. DOI:10.1109/TTHZ.2014.2326004
Liu Wei, Li Chao, Zhang Qun-ying, et al.. Fast three-dimensional sparse holography imaging algorithm for personal security verification[J]. Journal of Radars, 2016, 5(3): 271-277. DOI: 10.12000/JR15116. DOI:10.12000/JR15116
[12]
Gu S M, Li C, Gao X, et al.. Three-dimensional image reconstruction of targets under the illumination of terahertz Gaussian beam—theory and experiment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4): 2241-2249. DOI:10.1109/TGRS.2012.2209892
[13]
Cooper K B, Dengler R J, Llombart N, et al.. THz imaging radar for standoff personnel screening[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 169-182. DOI:10.1109/TTHZ.2011.2159556
[14]
Llombart N, Cooper K B, Dengler R J, et al.. Time-delay multiplexing of two beams in a terahertz imaging radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(7): 1999-2007. DOI:10.1109/TMTT.2010.2050106
[15]
Chen V C, Li F Y, Ho S S, et al.. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2-21.
Zhuang Zhao-wen, Liu Yong-xiang, and Li Xiang. The achievements of target characteristic with micro-motion[J]. Acta Electronica Sinica, 2007, 35(3): 520-525. DOI: 10.3321/j.issn:0372-2112.2007.03.028. DOI:10.3321/j.issn:0372-2112.2007.03.028
[17]
Chen V C. Analysis of radar micro-Doppler with time-frequency transform[C]. Proceedings of the Tenth IEEE Workshop on Statistical Signal and Array Processing, Pocono Manor, PA, 2000: 463-466.
[18]
Chen V C. Detection and analysis of human motion by radar[C]. Proceedings of IEEE Radar Conference, Rome, 2008: 1-4.
[19]
Chen V C. Joint time-frequency analysis for radar signal and imaging[C]. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Barcelona, 2008: 5166-5169.
[20]
Chen V C. Spatial and temporal independent component analysis of micro-Doppler features[C]. Proceedings of 2005 IEEE International Radar Conference, Arlington, VA, 2005: 348-353.
[21]
Chen V C. Doppler signatures of radar backscattering from objects with micro-motions[J]. IET Signal Processing, 2008, 2(3): 291-300. DOI:10.1049/iet-spr:20070137
[22]
Chen V C, Li F, Ho S S, et al.. Analysis of micro-Doppler signatures[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(4): 271-276. DOI:10.1049/ip-rsn:20030743
[23]
Chen V C, Lipps R, and Bottoms M. Advanced synthetic aperture radar imaging and feature analysis[C]. Proceedings of International Radar Conference, Adelaide, SA, Australia, 2003: 22-29.
[24]
Chen V C. Micro-Doppler effect of micromotion dynamics: A review[C]. Proceedings of SPIE 5102, Independent Component Analyses, Wavelets, and Neural Networks, Orlando, Florida, United States, 2003, 5102: 240-249.
Luo Ying, Zhang Qun, Wang Guo-zheng, et al.. Micro-motion signature extraction method for wideband radar based on complex image OMP decomposition[J]. Journal of Radars, 2012, 1(4): 361-369. DOI: 10.3724/SP.J.1300.2012.20065. DOI:10.3724/SP.J.1300.2012.20065
[26]
Mcmillan R W, Trussell C W, Bohlander R A, et al.. An experimental 225 GHz pulsed coherent radar[J]. IEEE Transactions on Microwave Theory and Techniques, 1991, 39(3): 555-562. DOI:10.1109/22.75300
[27]
Petkie D T, Benton C, and Bryan E. Millimeter-wave radar for vital signs sensing[C]. Proceedings of SPIE 7308, Radar Sensor Technology XⅢ, Orlando, Florida, United States, 2009, 7308: 73080A.
[28]
Petkie D T, Bryan E, Benton C, et al.. Remote respiration and heart rate monitoring with millimeter-wave/terahertz radars[C]. Proceedings of SPIE 7117, Millimetre Wave and Terahertz Sensors and Technology, Cardiff, Wales, United Kingdom, 2008, 7117: 71170I.
[29]
Petkie D T, Bryan E, Benton C, et al.. Millimeter-wave radar systems for biometric applications[C]. Proceedings of SPIE 7485, Millimetre Wave and Terahertz Sensors and Technology Ⅱ, Berlin, Germany, 2009, 7485: 748502.
[30]
Moulton M C, Bischoff M L, Benton C, et al.. Micro-doppler radar signatures of human activity[C]. Proceedings of SPIE 7837, Millimetre Wave and Terahertz Sensors and Technology Ⅲ, Toulouse, France, 2010, 7837: 78370L.
[31]
Massar M L. Time-frequency analysis of terahertz radar signals for rapid heart and breath rate detection[D]. [Master dissertation], Air Force Institute of Technology, 2008.
[32]
Li J and Pi Y M. Target detection for terahertz radar networks based on micro-Doppler signatures[J]. International Joural of Sensor Networks, 2015, 17(2): 115-121. DOI: 10.1504/IJSNET.2015.067861. DOI:10.1504/IJSNET.2015.067861
Li Jin, Pi Yi-ming, and Yang Xiao-bo. Research on terahertz radar target detection algorithm based on the extraction of micro motion feature[J]. Journal of Electronic Measurement and Instrument, 2010, 24(9): 803-807. DOI: 10.3724/SP.J.1187.2010.00803. DOI:10.3724/SP.J.1187.2010.00803
[34]
Li J, Pi Y M, and Yang X B. Micro-Doppler signature feature analysis in terahertz band[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, 31(3): 319-328.
[35]
Xu Z W, Tu J, Li J, et al.. Research on micro-feature extraction algorithm of target based on terahertz radar[J]. EURASIP Journal on Wireless Communications and Networking, 2013, 2013(1): 77. DOI:10.1186/1687-1499-2013-77
Li Jin, Pi Yi-ming, and Yang Xiao-bo. Analysis of micro-Doppler effect in terahertz band[J]. Journal of Electronic Measurement and Instrument, 2009, 23(10): 25-30.
Liu Tong, Xu Zheng-wu, Wu Yuan-jie, et al.. Human life feature detection based on EMD method in THz band[J]. Signal Processing, 2013, 29(12): 1650-1659.
[38]
Xu Z W and Liu T. Vital sign sensing method based on EMD in terahertz band[J]. EURASIP Journal on Advances in Signal Processing, 2014, 2014(1): 75. DOI:10.1186/1687-6180-2014-75
Xu Z W. The human heartbeat and micro-feature detection based on Thz radar[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2015.
[40]
Huang Z W, He Z H, Sun Z Y, et al.. Ananlysis and compensation of vibration error of high frequency synthetic aperture radar[C]. Proceedings of 2016 IEEE Geoscience and Remote Sensing Symposium, Beijing, 2016: 1138-1141.
[41]
Wang Y, Wang Z F, Zhao B, et al.. Enhancement of azimuth focus performance in high-resolution SAR imaging based on the compensation for sensors platform vibration[J]. IEEE Sensors Journal, 2016, 16(16): 6333-6345. DOI:10.1109/JSEN.2016.2584622
[42]
Barber B C. Some effects of target vibration on SAR images[C]. Proceedings of the 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2011: 1-4.
[43]
Wang Y, Wang Z F, Zhao B, et al.. Compensation for high-frequency vibration of platform in SAR imaging based on adaptive chirplet decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6): 792-795. DOI:10.1109/LGRS.2016.2544945
[44]
Zhang Y, Sun J P, Lei P, et al.. High-frequency vibration compensation of helicopter-borne THz-SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(3): 1460-1466. DOI:10.1109/TAES.2016.140615
[45]
Chen H Y, Jiang W D, Liu Y X, et al.. Nonuniform stretch processing for the range profile of a target with micro-motion[J]. Progress in Natural Science, 2006, 16(11): 1205-1213. DOI:10.1080/10020070612330131
Chen Hang-yong, Li Xiang, and Jiang Bin. Identification of air-target based on its micro-Doppler feature[J]. Modern Radar, 2006, 28(10): 30-33. DOI:10.3969/j.issn.1004-7859.2006.10.009
Chen Hang-yong, Li Xiang, Guo Gui-rong, et al.. Identification of airtarget based on the micromotion radar signatures of blades[J]. Systems Engineering and Electronics, 2006, 28(3): 372-375. DOI: 10.3321/j.issn:1001-506X.2006.03.014. DOI:10.3321/j.issn:1001-506X.2006.03.014
Chen Hang-yong, Liu Yong-xiang, Jiang Wei-dong, et al.. Micro-motion resolution of radar targets[J]. Systems Engineering and Electronics, 2007, 29(3): 361-364. DOI: 10.3321/j.issn:1001-506X.2007.03.008. DOI:10.3321/j.issn:1001-506X.2007.03.008
Chen Hang-yong, Liu Yong-xiang, Li Xiang, et al.. Extraction of micro-Doppler signatures for radar target[J]. Signal Processing, 2007, 23(2): 222-226. DOI: 10.3969/j.issn.1003-0530.2007.02.015. DOI:10.3969/j.issn.1003-0530.2007.02.015
Chen Hang-yong, Liu Yong-xiang, Jiang Wei-dong, et al.. Analysis of Doppler spectrum and parameters estimation for target with micro-motion[J]. Signal Processing, 2008, 24(1): 1-6. DOI: 10.3969/j.issn.1003-0530.2008.01.001. DOI:10.3969/j.issn.1003-0530.2008.01.001
Chen Hang-yong, Liu Yongxiang, Li Xiang, et al.. Analysis of micro-Doppler and parameters estimation[J]. Journal of Infrared and Millimeter Waves, 2006, 25(5): 360-363. DOI: 10.3321/j.issn:1001-9014.2006.05.010. DOI:10.3321/j.issn:1001-9014.2006.05.010
Chen Hang-yong, Liu Yong-xiang, Jiang Wei-dong, et al.. Mathematics of synthesizing range profile of target with micro-motion[J]. Acta Electronica Sinica, 2007, 35(3): 585-589. DOI: 10.3321/j.issn:0372-2112.2007.03.042. DOI:10.3321/j.issn:0372-2112.2007.03.042
Zhang Yi, Zhu Yu-peng, and Li Xiang. Micro-motion parameter estimation of ballistic missile target based on micro-Doppler feature[J]. Signal Processing, 2009, 25(7): 1120-1124. DOI: 10.3969/j.issn.1003-0530.2009.07.022. DOI:10.3969/j.issn.1003-0530.2009.07.022
Zhang Yi, Zhu Yu-peng, Cheng Yong-qiang, et al.. Human target radar echo signal analysis based on micro-Doppler characteristic[J]. Signal Processing, 2009, 25(10): 1616-1623. DOI:10.3969/j.issn.1003-0530.2009.10.023
Zhang Yi, Qiu Zhao-kun, Zhu Yu-peng, et al.. Human gait parameter estimation based on micro-Doppler feature[J]. Signal Processing, 2010, 26(6): 917-922. DOI: 10.3969/j.issn.1003-0530.2010.06.021. DOI:10.3969/j.issn.1003-0530.2010.06.021
Zhang Yi, Zhu Yu-peng, Liu Zheng, et al.. Parameter estimation of human upper limbs motion based on micro-Doppler features[J]. Journal of Astronautic Metrology and Measurement, 2009, 29(3): 20-25, 38. DOI: 10.3969/j.issn.1000-7202.2009.03.006. DOI:10.3969/j.issn.1000-7202.2009.03.006
Li Kang-le, Jiang Wei-dong, and Li Xiang. Micro-motion feature analysis and extraction methods for ballistic targets[J]. Systems Engineering and Electronics, 2010, 32(1): 115-118.
Li Kang-le, Liu Yong-xiang, Jiang Wei-dong, et al.. Reconstruction of target with micro-motions based on inverse radon transform[J]. Radar Science and Technology, 2010, 8(1): 74-79, 86. DOI: 10.3969/j.issn.1672-2337.2010.01.015. DOI:10.3969/j.issn.1672-2337.2010.01.015
Huo Kai, Li Kang-le, Jiang Wei-dong, et al.. Parameters estimation of signals with sinusoid modulated phase based on cyclostationary character[J]. Journal of Electronics & Information Technology, 2010, 32(2): 355-359. DOI: 10.3724/SP.J.1146.2009.00072. DOI:10.3724/SP.J.1146.2009.00072
Peng B. Sinusoidal frequency modulation fourier transform and research on micro-doppler signature retrieval for radar targets[D]. [Ph.D. dissertation], National University and Defense Technology, 2014.
[64]
Cooper K B, Dengler R J, Chattopadhyay G, et al.. A high-resolution imaging radar at 580 GHz[J]. IEEE Microwave and Wireless Components Letters, 2008, 18(1): 64-66. DOI:10.1109/LMWC.2007.912049
[65]
Trischman J A, Bennett J R, Melendez K A, et al.. Inverse synthetic aperture radar imaging at 580 GHz[C]. Proceedings of the 33rd International Conference on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, 2016: 1-2.
[66]
Essen H, Wahlen A, Sommer R, et al.. Development of a 220-GHz experimental radar[C]. Proceedings of 2008 German Microwave Conference, Germany, 2011: 1-4.
[67]
Liu B C, Wang T, and Bao Z. Doppler ambiguity resolving in compressed azimuth time and range frequency domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11): 3444-3458. DOI:10.1109/TGRS.2008.2001236
[68]
Yang Q, Deng B, Wang H Q, et al.. A Doppler aliasing free micro-motion parameter estimation method in the terahertz band[J]. EURASIP Journal on Wireless Communications and Networking, 2017, 2017(1): 61. DOI:10.1186/s13638-017-0845-z
[69]
Yang Q, Deng B, Wang H Q, et al.. Doppler aliasing free micro-motion parameter estimation algorithm based on the spliced time-frequency image and inverse radon transform[C]. Proceedings of International Conference on Information and Communications Technologies, Nanjing, China, 2014: 1-6.
[70]
Jagannathan A, Gatesman A J, Horgan T, et al.. Effect of periodic roughness and surface defects on the terahertz scattering behavior of cylindrical objects[C]. Proceedings of SPIE 7671, Terahertz Physics, Devices, and Systems IV: Advanced Applications in Industry and Defense, Orlando, Florida, United States, 2010, 7671: 76710E.
[71]
Jagannathan A, Gatesman A J, and Giles R H. Characterization of roughness parameters of metallic surfaces using terahertz reflection spectra[J]. Optics Letters, 2009, 34(13): 1927-1929. DOI:10.1364/OL.34.001927
[72]
Digiovanni D A, Gatesman A J, Giles R H, et al.. Backscattering of ground terrain and building materials at submillimeter-wave and terahertz frequencies[C]. Proceedings of SPIE 8715, Passive and Active Millimeter-Wave Imaging XVI, Baltimore, Maryland, United States, 2013, 8715: 871507.
[73]
Digiovanni D A, Gatesman A J, Goyette T M, et al.. Surface and volumetric backscattering between 100 GHz and 1.6 THz[C]. Proceedings of SPIE 9078, Passive and Active Millimeter-Wave Imaging XVⅡ, Baltimore, Maryland, United States, 2014: 90780A.
[74]
Yang Q, Qin Y, Deng B, et al.. Research on terahertz scattering characteristics of the precession cone[C]. 2nd International Conference on Computer Science and Mechanical Automation, Wuhan, 2016.
[75]
Yang Q, Qin Y L, Deng B, et al.. Micro-doppler ambiguity resolution for wideband terahertz radar using intra-pulse interference[J]. Sensors, 2017, 17(5): 993. DOI:10.3390/s17050993
[76]
Yang Q, Deng B, Zhang Y, et al.. Parameter estimation and imaging of rough surface rotating targets in the terahertz band[J]. Journal of Applied Remote Sensing, 2017, 11(4): 045001.
[77]
Yang Q, Deng B, Qin Y, et al.. Analysis of the high frequency vibration on radar imaging in the terahertz band[C]. 2nd International Conference on Computer Science and Mechanical Automation, Wuhan, 2016.
[78]
Yang Q, Qin Y L, Zhang K, et al.. Experimental research on vehicle-borne SAR imaging with THz radar[J]. Microwave and Optical Technology Letters, 2017, 59(8): 2048-2052. DOI:10.1002/mop.v59.8
[79]
Yang Q, Deng B, Wang H Q, et al.. Experimental research on imaging of precession targets with THz radar[J]. Electronics Letters, 2016, 52(25): 2059-2061. DOI:10.1049/el.2016.3494
[80]
Yang Q, Deng B, Wang H Q, et al.. Research on imaging of precession targets based on range-instantaneous Doppler in the terahertz band[C]. Proceedings of 2017 International Workshop on Electromagnetics: Applications and Student Innovation Competition, London, 2017: 14-15.