摘要 空时自适应处理(Space Time Adaptive Processing,STAP)技术通过空域和时域2维联合自适应滤波的方式,实现了机载雷达对强杂波与干扰的有效抑制。作为提升机载雷达性能的一项关键技术,近年来备受雷达领域的关注与世界军事强国的重视。该文从方法、实验系统和应用3个方面回顾了空时自适应处理技术的发展过程和研究现状,着重阐述了其发展过程中遇到的关键技术问题,介绍了STAP技术在装备上的应用情况,并讨论了下一步的发展趋势,提出了需要或值得进一步研究的方向。
Abstract:Used to suppress strong clutter and jamming in airborne radar data, Space Time Adaptive Processing (STAP) is a multidimensional adaptive filtering technique that simultaneously combines signals from elements of an antenna array and multiple pulses of coherent radar waveforms. As a key technology for improving the performance of airborne radar, it has attracted much attention in the field of radar research and from powerful military nations in recent years. In this paper, the research and development status of STAP technology is reviewed including methodologies, experimental systems, and applications and we focus on the key technical problems encountered during its development. Then, the application of STAP technology in equipment is introduced. Finally, the next development trends, future directions, and areas worthy of further research are presented.
谢文冲, 段克清, 王永良. 机载雷达空时自适应处理技术研究综述[J]. 雷达学报, 2017, 6(6): 575-586.
Xie Wenchong, Duan Keqing, Wang Yongliang. Space Time Adaptive Processing Technique for Airborne Radar: An Overview of Its Development and Prospects. JOURNAL OF RADARS, 2017, 6(6): 575-586.
Brennan L E and Reed I S. Theory of adaptive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, AES-9(2): 237-252. DOI:10.1109/TAES.1973.309792.
[2]
Klemm R. Space-Time Adaptive Processing: Principles and Applications[M]. Stevenage, UK: IEE Publishers, 1998.
[3]
王永良, 彭应宁. 空时自适应信号处理[M]. 北京: 清华大学出版社, 2000.
Wang Y L and Peng Y N. Space-Time Adaptive Processing[M]. Beijing: Tsinghua University Press, 2000.
[4]
Klemm R. Principles of Space-Time Adaptive Processing[M]. Second Edition, Stevenage, Herts., UK: IEE Publishers, 2002.
[5]
Guerci J R. Space-Time Adaptive Processing for Radar[M]. Boston: Artech House, 2003.
[6]
Klemm R. Applications of Space-Time Adaptive Processing[M]. London: IEE Publishers, 2004.
[7]
Klemm R. Principles of Space-Time Adaptive Processing[M]. Third edition, London, UK: IEE Publishers, 2006.
[8]
Ward J. Space-time adaptive processing for airborne radar[R]. No. 1015. London: MIT Lincoln Laboratory, 1994.
[9]
Melvin W L. Space-time adaptive processing and adaptive arrays: Special collection of papers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 508-509. DOI:10.1109/7.845233.
[10]
Klemm R. Special issue on space-time adaptive processing (STAP)[J]. Electronics & Communications Engineering Journal, 1999, 11(1): 2.
[11]
Rangaswamy M. An overview of space-time adaptive processing for radar[C]. Proceedings of IEEE International Conference on Radar, Adelaide, Australia, 2003: 45-50.
[12]
Melvin W L. A STAP overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1/2): 19-35.
[13]
Wicks M C, Rangaswamy M, Adve R, et al.. Space-time adaptive processing: A knowledge-based perspective for airborne radar[J]. IEEE Signal Processing Magazine, 2006, 23(1): 51-65. DOI:10.1109/MSP.2006.1593337.
[14]
Greve S, Ries P, Lapierre F, et al.. Framework and taxonomy for radar space-time adaptive processing (STAP) methods[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1084-1099. DOI:10.1109/TAES.2007.4383596.
Wang Y L and Li T Q. Overview and outlook of space time adaptive signal processing for airborne radar[J]. Journal of CAEIT, 2008, 3(3): 271-275, 296. DOI:10.3969/j.issn.1673-5692.2008.03.010.
[16]
Maher J, Callahan M, and Lynch D. Effects of clutter modeling in evaluating STAP processing for space-based radars[C]. Proceedings of the Record of the IEEE 2000 International Radar Conference, Alexandria, VA, 2000: 565-570.
[17]
Lesturgie M. Use of STAP techniques to enhance the detection of slow targets in shipborne HFSWR[C]. Proceedings of International Radar Conference, Adelaide, Australia, 2003: 504-509.
[18]
Ender J H G. Space-time processing for multichannel synthetic aperture radar[J]. Electronics & Communications Engineering Journal, 1999, 11(1): 29-38.
[19]
Paulraj A J and Lindskog E. Taxonomy of space-time processing for wireless networks[J]. IEE Proceedings-Radar, Sonar and Navigation, 1998, 145(1): 25-31. DOI:10.1049/ip-rsn:19981807.
[20]
Fante R L and Vaccaro J J. Wideband cancellation of interference in a GPS receive array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 549-564. DOI:10.1109/7.845241.
[21]
Brennan L E, Mallett J D, and Reed I S. Adaptive arrays in airborne MTI radar[J]. IEEE Transactions on Antennas and Propagation, 1976, 24(5): 607-615. DOI:10.1109/TAP.1976.1141412.
[22]
Titi W G. An overview of the ARPA/NAVY mountaintop program[C]. Proceedings of IEEE Adaptive Antenna Systems Symposium, Melville, NY, 1994.
[23]
Suresh Babu, Torres J A, and Melvin W L. Processing and evaluation of multichannel airborne radar measurements (MCARM) measured data[C]. Proceedings of IEEE International Symposium on Phased Array Systems and Technology, Boston, MA, 1996: 395-399.
[24]
Schrader G E. The knowledge aided sensor signal processing and expert reasoning (KASSPER) real-time signal processing architecture[C]. Proceedings of IEEE Radar Conference, Philadelphia, PA, USA, 2004: 394-397.
[25]
Klemm R. Adaptive airborne MTI: An auxiliary channel approach[J]. IEE Proceedings F Communications, Radar and Signal Processing, 1987, 134(3): 269-276. DOI:10.1049/ip-f-1.1987.0054.
Bao Z, Liao G S, Wu R B, et al.. 2-D temporal-spatial adaptive clutter suppression for phased array airborne radars[J]. Acta Electronica Sinica, 1993, 21(9): 1-7.
[27]
Wang Y L, Peng Y N, and Bao Z. Space-time adaptive processing for airborne radar with various array orientation[J]. IEE Proceedings Radar, Sonar Navigation, 1997, 144(6): 330-340.
[28]
Dipietro R C. Extended factored space-time processing for airborne radar systems[C]. Proceedings of the 26th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 1992, 1: 425-430.
[29]
Wang H and Cai L J. On adaptive spatial-temporal processing for airborne surveillance radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 660-670. DOI:10.1109/7.303737.
[30]
Brown R D, Wicks M C, Zhang Y, et al.. A space-time adaptive processing approach for improved performance and affordability[C]. Proceedings of IEEE National Radar Conference, Ann Arbor, MI, 1996: 321-326.
[31]
Wang Y L, Chen J W, Bao Z, et al.. Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(1): 71-81.
[32]
Klemm R. Adaptive clutter suppression for airborne phased array radar[J]. IEE Proceedings H-Microwaves, Optics and Antennas, 1983, 130(1): 125-132. DOI:10.1049/ip-h-1.1983.0021.
[33]
Brennan L E and Staudaher F M. Subclutter visibility demonstration[R]. RL-TR-92-21, Adaptive Sensors Incorporated, 1992.
[34]
Haimovich A M and Berin M. Eigenanalysis-based space-time adaptive radar: Performance analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(4): 1170-1179. DOI:10.1109/7.625104.
[35]
Goldstein J S and Reed I S. Reduced-rank adaptive filtering[J]. IEEE Transactions on Signal Processing, 1997, 45(2): 492-496.
[36]
张良. 机载相控阵雷达降维STAP研究[D]. [博士论文], 西安电子科技大学, 1999.
Zhang L. Study of reduced-rank STAP for airborne phased array radar[D]. [Ph.D. dissertation], Xidian University, 1999.
[37]
Rabideau D J and Steinhardt A O. Improved adaptive clutter cancellation through data-adaptive training[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 879-891. DOI:10.1109/7.784058.
[38]
Kogon S M and Zatman M A. STAP adaptive weight training using phase and power selection criteria[C]. Proceedings of the 35th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2001, 1: 98-102.
[39]
Melvin W L, Wicks M C, and Brown R D. Assessment of multichannel airborne radar measurements for analysis and design of space-time processing architectures and algorithms[C]. Proceedings of IEEE National Radar Conference, Ann Arbor, Michigan, 1996: 130-135.
[40]
Adve R S, Hale T B, and Wicks M C. Transform domain localized processing using measured steering vectors and non-homogeneity detection[C]. Proceedings of the Record of the 1999 IEEE Radar Conference, Boston, MA, 1999: 285-290.
[41]
Wicks M C, Melvin W L, and Chen P. An efficient architecture for nonhomogeneity detection in space-time adaptive processing airborne early warning radar[C]. Proceedings of (Conf. Publ. No. 449) Radar 97, Edinburgh, UK, 1997: 295-299.
Wu H, Wang Y L, and Chen J W. Nonhomogeneous detector for STAP based on spectral center frequency method[J]. Systems Engineering and Electronics, 2008, 30(4): 606-608. DOI:10.3321/j.issn:1001-506X.2008.04.005.
[43]
Sarkar T K, Wang H, Park S, et al.. A deterministic least-squares approach to space-time adaptive processing (STAP)[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(1): 91-103. DOI:10.1109/8.910535.
[44]
Roman J R, Rangaswamy M, Davis D W, et al.. Parametric adaptive matched filter for airborne radar applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 677-692.
[45]
Parker P and Swindlehurst A. Space-time autoregressive filtering for matched subspace STAP[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2): 510-520.
[46]
Wang P, Li H B, and Himed B. Knowledge-aided parametric tests for multichannel adaptive signal detection[J]. IEEE Transactions on Signal Processing, 2011, 59(12): 5970-5982.
Duan K Q, Xie W C, Gao F, et al.. Parameters estimation method for STAR model based on clutter degree of freedom[J]. Signal Processing, 2009, 25(11): 1715-1718. DOI:10.3969/j.issn.1003-0530.2009.11.010.
[48]
Guerci J R and Baranoski E J. Knowledge-aided adaptive radar at DARPA: An overview[J]. IEEE Signal Processing Magazine, 2006, 23(1): 41-50.
[49]
Melvin W L and Guerci J R. Knowledge-aided signal processing: A new paradigm for radar and other advanced sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 983-996.
[50]
Melvin W L and Showman G A. An approach to knowledge-aided covariance estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1021-1042.
[51]
Xie W C, Duan K Q, Gao F, et al.. Clutter suppression for airborne phased radar with conformal arrays by least squares estimation[J]. Signal Processing, 2011, 91(7): 1665-1669.
[52]
Maria S and Fuchs J J. Application of the global matched filter to STAP data an efficient algorithmic approach[C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, 2006: 14-19.
[53]
Sun K, Meng H D, Wang Y L, et al.. Direct data domain STAP using sparse representation of clutter spectrum[J]. Signal Processing, 2011, 91(9): 2222-2236.
[54]
Yang Z C, Rodrigo C. de Lamare, and Li X. L1-regularized STAP algorithms with a generalized sidelobe canceler architecture for airborne radar[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 674-686.
[55]
Ma Z Q, Liu Y M, Meng H D, et al.. Jointly Sparse recovery of multiple snapshots in STAP[C]. Proceedings of IEEE Radar Conference, Ottawa, ON, 2013: 1-4.
Wang Z T, Duan K Q, Xie W C, et al.. A joint sparse recovery STAP method based on SA-MUSIC[J]. Acta Electronica Sinica, 2015, 43(5): 846-853. DOI:10.3969/j.issn.0372-2112.2015.05.003.
[57]
Adve R S, Hale T B, and Wicks M C. Practical joint domain localised adaptive processing in homogeneous and nonhomogeneous environments. Part 2: Nonhomogeneous environments[J]. IEE Proceedings-Radar, Sonar and Navigation, 2000, 147(2): 66-74.
[58]
Aboutanios E and Mulgrew B. Hybrid detection approach for STAP in heterogeneous clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1021-1033.
[59]
Gerlach K and Picciolo M L. Robust STAP using reiterative censoring[C]. Proceedings of IEEE Radar Conference, Huntsville, AL, 2003: 244-251.
[60]
Shackelford A K, Gerlach K, and Blunt S D. Partially adaptive STAP using the FRACTA algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(1): 58-69.
[61]
Blunt S D, Gerlach K, and Rangaswamy M. STAP using knowledge-aided covariance estimation and the FRACTA algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1043-1057. DOI:10.1109/TAES.2006.248197.
[62]
Borsari G K. Mitigating effects on STAP processing caused by an inclined array[C]. Proceedings of IEEE Radar Conference, Dallas, TX, 1998: 135-140.
Wei J W, Wang Y L, and Chen J W. Space-time adaptive processing approaches to bistatic airborne early warning radar[J]. Acta Electronica Sinica, 2001, 29(S1): 1936-1939. DOI:10.3321/j.issn:0372-2112.2001.z1.051.
[64]
Pearson F and Borsari G K. Simulation and analysis of adaptive interference suppression for bistatic surveillance radars[C]. Proceedings of the Adaptive Sensor Array Processing Workshop, Lexington, MA, 2001.
[65]
Himed B, Zhang Y H, and Hajjari A. STAP with angle-Doppler compensation for bistatic airborne radar[C]. Proceedings of IEEE Radar Conference, Long Beach, CA, 2002: 311-317.
[66]
Jaffer A and Ho P T. Adaptive angle-Doppler compensation techniques for bistatic STAP radars[R]. AFRL-SN-RS-TR-2005-398, AFRL, 2005.
[67]
Lapierre F D, Verly J G, and Van Droogenbroeck M V. New solutions to the problem of range dependence in bistatic STAP radars[C]. Proceedings of IEEE Radar Conference, Huntsville, AL, USA, 2003: 452-459.
[68]
Lapierre F D and Verly J G. Registration-based solutions to the range-dependence problem in radar STAP[C]. Proceedings of the 11th Adaptive Sensor Array Processing Workshop, Lexington, MA, 2003: 1-6.
[69]
Xie W C, Zhang B H, Wang Y L, et al.. Range ambiguity clutter suppression for bistatic STAP radar[J]. EURASIP Journal on Advances in Signal Processing, 2013, 2013(75): 1-13. DOI:10.1186/1687-6180-2013-13.
[70]
Friedlander B. The MVDR beamformer for circular arrays[C]. Proceedings of the 34th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2000: 25-29.
[71]
Varadarajan V and Krolik J L. Joint space-time interpolation for distorted linear and bistatic array geometries[J]. IEEE Transactions on Signal Processing, 2006, 56(3): 848-860.
Peng X R, Xie W C, and Wang Y L. Improved joint space-time interpolation technique for bistatic airborne radar[J]. Journal of Electronics & Information Technology, 2010, 32(7): 1697-1702. DOI:10.3724/SP.J.1146.2009.00975.
[73]
Zatman M. Circular array STAP[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 510-517. DOI:10.1109/7.845235.
Wang W L. Study on STAP for phased array airborne radar in nonhomogeneous environment[D]. [Ph.D. dissertation], Xidian University, 2004.
[75]
Lim C H and Mulgrew B. Prediction of inverse covariance matrix (PICM) sequences for STAP[J]. IEEE Signal Processing Letters, 2006, 13(4): 236-239. DOI:10.1109/LSP.2005.863654.
[76]
Lim C H, See C M S, and Mulgrew B. Non-linear prediction of inverse covariance matrix for STAP[C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Honolulu, HI, 2007: Ⅱ-921-Ⅱ-924.
Gao F, Xie W C, and Wang Y L. Research on 3D-STAP methods in non-stationary clutter[J]. Acta Electronica Sinica, 2009, 37(4): 868-872. DOI:10.3321/j.issn:0372-2112.2009.04.036.
[78]
Wang Y L, Duan K Q, and Xie W C. Cross beam STAP for nonstationary clutter suppression in airborne radar[J]. International Journal of Antennas and Propagation, 2013, 2013: 276310. DOI:10.1155/2013/276310.
Duan K Q, Xie W C, and Wang Y L. Nonstationary clutter suppression for airborne conformal array radar[J]. Science China Information Sciences, 2011, 54(10): 2170-2177.
Xie W C and Wang Y L. Study on clutter suppression approach to airborne phased radar with non-sidelooking arrays based on CMT[J]. Acta Electronica Sinica, 2007, 35(3): 441-444. DOI:10.3321/j.issn:0372-2112.2007.03.011.
[81]
Kelly E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(2): 115-127. DOI:10.1109/TAES.1986.310745.
[82]
Robey F C, Fuhrmann D R, Kelly E J, et al.. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208-216. DOI:10.1109/7.135446.
[83]
Chen W S and Reed I S. A new CFAR detection test for radar[J]. Digital Signal Processing, 1991, 1(4): 198-214. DOI:10.1016/1051-2004(91)90113-Y.
[84]
Maio A D. Rao test for adaptive detection in Gaussian interference with unknown covariance matrix[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3577-3584. DOI:10.1109/TSP.2007.894238.
[85]
Maio A D. A new derivation of the adaptive matched filter[J]. IEEE Signal Processing Letters, 2004, 11(10): 792-793. DOI:10.1109/LSP.2004.835464.
[86]
Raghavan R S, Qiu H F, and Mclaughlin D J. CFAR detection in clutter with unknown correlation properties[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2): 647-657. DOI:10.1109/7.381913.
[87]
Kraut S and Scharf L L. The CFAR adaptive subspace detector is a scale-invariant GLRT[J]. IEEE Transactions on Signal Processing, 1999, 47(9): 2538-2541. DOI:10.1109/78.782198.
[88]
Kraut S, Scharf L L, and McWhorter L T. Adaptive subspace detectors[J]. IEEE Transactions on Signal Processing, 2001, 49(1): 1-16. DOI:10.1109/78.890324.
Wang Y L, Liu W J, Xie W C, et al.. Research progress of space-time adaptive detection for airborne radar[J]. Journal of Radars, 2014, 3(2): 201-207. DOI:10.3724/SP.J.1300.2014.13081.
[90]
Liu W J, Xie W C, and Wang Y L. Parametric detector in the situation of mismatched signals[J]. IET Radar, Sonar & Navigation, 2014, 8(1): 48-53.
Liu W J, Chang J D, Li H, et al.. Generalized likelihood ratio test for airborne radar in the presence of jamming[J]. Radar Science and Technology, 2014, 12(3): 267-272. DOI:10.3969/j.issn.1672-2337.2014.03.008.
Liu W J, Xie W C, and Wang Y L. Generalized likelihood ratio test for airborne radar with jamming in partially homogeneous environment[J]. Journal of Electronics & Information Technology, 2013, 35(8): 1820-1826. DOI:10.3724/SP.J.1146.2012.01492.
[93]
Liu W J, Xie W C, Liu J, et al.. Adaptive double subspace signal detection in Gaussian background-part I: Homogeneous environments[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2345-2357. DOI:10.1109/TSP.2014.2309556.
[94]
Liu W J, Xie W C, Liu J, et al.. Adaptive double subspace signal detection in Gaussian background-part Ⅱ: Partially homogeneous environments[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2358-2369. DOI:10.1109/TSP.2014.2309553.
[95]
Liu W J, Xie W C, Liu J, et al.. Detection of a distributed target with direction uncertainty[J]. IET Radar, Sonar & Navigation, 2014, 8(9): 1177-1183.
[96]
Liu W J, Xie W C, and Wang Y L. Rao and Wald tests for distributed targets detection with unknown signal steering[J]. IEEE Signal Processing Letters, 2013, 20(11): 1086-1089. DOI:10.1109/LSP.2013.2277371.
[97]
Liu W J, Xie W C, Li R F, et al.. Adaptive detectors in the Krylov subspace[J]. Science China Information Sciences, 2014, 57(10): 102310-102311.
[98]
Wang Y L, Liu W J, Xie W C, et al.. Reduced-rank space-time adaptive detection for airborne radar[J]. Science China Information Sciences, 2014, 57(8): 82310-82311.
[99]
Jao J K, Yegulalp A F, and Ayasli S. Unified synthetic aperture space time adaptive radar (USASTAR) concept[R]. No. NTI-4, Lexington, MA: MIT Lincoln Laboratory, 2004.
Chang Y L. Coherent-processing-interval STAP techniques for low frequency multi-channel ultra-wide band SAR/GMTI system[D]. [Ph.D. dissertation], National University of Defense Technology, 2009.