Abstract:Two important issues must be considered when modeling the terahertz (THz) wave scattering behavior using microwave EM methods. The first is the material response characteristics, including the metallic materials that may be beyond the scope of the Drude model's description and the dielectric materials that may lack appropriate description models. The second is the modeling method for investigating the THz scattering behavior of the surface random roughness and the complex fine structures. Several theoretical endeavors are presented in this paper to elucidate the surface- and volume-scattering phenomenon observed in the experiment data. First, we employ the Integral Equation Method (IEM) to fit the measured data of an aluminum plate. Good agreements confirm the superior applicability of IEM to the metallic materials. Nevertheless, for dielectric materials, the volume-scattering contributions of the inner microstructures or particles whose sizes are comparable to the THz wavelength are required to be considered. Furthermore, our findings state that, for dielectric materials, it can be fit to the experimental data with the help of the Vector Radiative Transfer (VRT) theory. Finally, this research proposes a semi-deterministic description-based ray-tracing high-frequency algorithm to realize the rapid modeling of the coherent and incoherent scattering of electrically large complex targets at THz bands.
陈 珲, 徐 亮, 张言明, 周小阳, 崔铁军. 超电大复杂目标太赫兹散射特性建模微波方法延拓研究[J]. 雷达学报, 2018, 7(1): 108-118.
Chen Hui, Xu Liang, Zhang Yanming, Zhou Xiaoyang, Cui Tiejun. Theoretical Extension of a Microwave EM Method for Predicting the Terahertz Scattering of Electrically Large Complex Target. JOURNAL OF RADARS, 2018, 7(1): 108-118.
Liu Sheng-gang. Recent development of terahertz science and technology[J]. China Basic Science, 2006, 8(1): 7-12. DOI:10.3969/j.issn.1009-2412.2006.01.003
[4]
Ferguson B and Zhang X C. Materials for terahertz science and technology[J]. Nature Materials, 2002, 1(1): 26-33. DOI:10.1038/nmat708
[5]
Goyette T M, Gatesman A, Horgan T M, et al.. THz compact range radar systems[C]. Proceedings of IEEE International Microwave Symposium, Philadelphia, 2003.
[6]
Goyette T M, Dickinson J C, Waldman J, et al.. Three-dimensional fully polarimetric W-band ISAR imagery of scale-model tactical targets using a 1.56-THz compact range[C]. Proceedings of the SPIE 5095, Algorithms for Synthetic Aperture Radar Imagery X, Orlando, Florida, United States, 2003.
[7]
Digiovanni D A, Gatesman A J, and Giles R H. Backscattering of ground terrain and building materials at submillimeter-wave and terahertz frequencies[C]. Proceedings of the SPIE 8715, Passive and Active Millimeter-Wave Imaging XVI, Baltimore, Maryland, United States, 2013, 8715: 871507.
[8]
Tamminen A, Ala-Laurinaho J, and Räisänen A V. Indirect holographic imaging: Evaluation of image quality at 310 GHz[C]. Proceedings of the SPIE 7670, Passive Millimeter-Wave Imaging Technology XⅢ, Orlando, Florida, United States, 2010, 7670: 76700A.
[9]
Tamminen A, Lonnqvist A, Mallat J, et al.. Monostatic reflectivity and transmittance of radar absorbing materials at 650 GHz[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(3): 632-637. DOI:10.1109/TMTT.2008.916881
[10]
Iwaszczuk K, Heiselberg H, and Jepsen P U. Terahertz radar cross section measurements[J]. Optics Express, 2010, 18(25): 26399-26408. DOI:10.1364/OE.18.026399
[11]
Iwaszczuk K, Strikwerda A C, Fan K B, et al.. Flexible metamaterial absorbers for stealth applications at terahertz frequencies[J]. Optics Express, 2012, 20(1): 635-643. DOI:10.1364/OE.20.000635
[12]
Gente R, Jansen C, Geise R, et al.. Scaled bistatic radar cross section measurements of aircraft with a fiber-coupled THz time-domain spectrometer[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(4): 424-431. DOI:10.1109/TTHZ.2012.2192929
Wang Rui-jun, Wang Hong-qiang, Zhuang Zhao-wen, et al.. Research progress of Terahertz radar technology[J]. Laser & Optoelectronics Progress, 2013, 50(4): 040001.
Wu Ya-jun, Huang Xin, Xu Xiu-li, et al.. Radar cross section measurement technique of scale-model targets at terahertz[J]. High Power Laser and Particle Beams, 2013, 25(6): 1541-1544. DOI:10.3788/HPLPB20132506.1541
Jiang Ge, Cheng Bin-bin, and Zhang Jian. 0.14 THz radar imaging based Radar Cross Section measurement[J]. Journal of Terahertz Science and Electronic Information Technology, 2014, 12(1): 19-23. DOI:10.11805/TKYDA201401.0019
[17]
DiGiovanni D A, Gatesman A J, Giles R H, et al.. Electromagnetic scattering from dielectric surfaces at millimeter wave and terahertz frequencies[C]. Proceedings of the SPIE 9462, Passive and Active Millimeter-Wave Imaging XVⅢ, Baltimore, Maryland, United States, 2015, 9462: 94620H.
[18]
DiGiovanni D A, Gatesman A J, Goyette T M, et al.. Surface and volumetric backscattering between 100 GHz and 1.6 THz[C]. Proceedings of the SPIE 9078, Passive and Active Millimeter-Wave Imaging XVⅡ, Baltimore, Maryland, United States, 2014, 9078: 90780A.
[19]
Soto-Crespo J M, Nieto-Vesperinas M, and Friberg A T. Scattering from slightly rough random surfaces: A detailed study on the validity of the small perturbation method[J]. Journal of the Optical Society of America A, 1990, 7(7): 1185-1201. DOI:10.1364/JOSAA.7.001185
[20]
Hsieh C Y, Fung A K, Nesti G, et al.. A further study of the IEM surface scattering model[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(4): 901-909. DOI:10.1109/36.602532
[21]
Jin Y Q. Electromagnetic Scattering Modelling for Quantitative Remote Sensing[M]. Singapore: World Scientific, 1993.
[22]
金亚秋. 矢量辐射传输理论和参数反演[M]. 郑州: 河南科学技术出版社, 1994.
Jin Ya-qiu. Theory of Vector Radiation Transmission and Parameter Inversion[M]. Zhengzhou: Henan Science and Technology Press, 1994.
[23]
金亚秋. 电磁散射和热辐射的遥感理论[M]. 北京: 科学出版社, 1993.
Jin Ya-qiu. Remote Sensing Theory of Electromagnetic Scattering and Thermal Radiation[M]. Beijing: Science Press, 1993.
[24]
Kozlov A I, Ligthart L P, Logvin A I, et al.. Mathematical and Physical Modelling of Microwave Scattering and Polarimetric Remote Sensing: Monitoring the Earth's Environment Using Polarimetric Radar: Formulation and Potential Applications[M]. New York: Kluwer Academic Publishers, 2001: 43-65.
[25]
Xu F and Jin Y Q. Bidirectional analytic ray tracing for fast computation of composite scattering from electric-large target over a randomly rough surface[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(5): 1495-1505. DOI:10.1109/TAP.2009.2016691
[26]
Chen H, Zhang M, Zhao Y W, et al.. An efficient slope-deterministic facet model for SAR imagery simulation of marine scene[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(11): 3751-3756. DOI:10.1109/TAP.2010.2071349]