Abstract:Based on the physical optics method, the scattering characteristics of fractal rough surface coated objects are studied in the terahertz (THz) range herein. A blunt model based on fractal rough surfaces is built. The surface current is calculated according to the Fresnel reflection coefficient, and the Radar Cross Section (RCS) of the rough coated target is obtained. The RCS of rough and smooth surface targets are compared. Numerical results for a rough coated blunt cone model are provided, and discussed from the perspective of different frequencies and coating thickness values. The results show that the surface roughness of the target has a significant effect on scattering in the terahertz range.
Episkopou E, Papantonis S, Otter W J, et al.. Defining material parameters in commercial EM solvers for arbitrary metal-based THz structures[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(5): 513-524. DOI:10.1109/TTHZ.2012.2208456
[2]
Kirley M P and Booske J H. Terahertz conductivity of copper surfaces[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(6): 1012-1020. DOI:10.1109/TTHZ.2015.2468074
[3]
Li Z, Cui T J, Zhong X J, et al.. Electromagnetic scattering characteristics of PEC targets in the terahertz regime[J]. IEEE Antennas and Propagation Magazine, 2009, 51(1): 39-50. DOI:10.1109/MAP.2009.4939018
[4]
Danylov A A, Goyette T M, Waldman J, et al.. Terahertz inverse synthetic aperture radar (ISAR) imaging with a quantum cascade laser transmitter[J]. Optics Express, 2010, 18(15): 16264-16272. DOI:10.1364/OE.18.016264
[5]
Younus A, Desbarats P, Bosio S, et al.. Terahertz dielectric characterisation of photopolymer resin used for fabrication of 3D THz imaging phantoms[J]. Electronics Letters, 2009, 45(13): 702-703. DOI:10.1049/el.2009.0688
Yang Yang, Yao Jian-quan, Zhang Jing-shui, et al.. Terahertz scattering on rough copper surface[J]. Journal of Infrared and Millimeter Waves, 2013, 32(1): 36-39, 79. DOI:10.3724/SP.J.1010.2013.00036
Yang Yang and Jing Lei. Impact of the metal permittivity on radar target scattering cross section[J]. Laser & Infrared, 2013, 43(2): 155-158. DOI:10.3969/j.issn.1001-5078.2013.02.008
Cheng Zhi-hua, Xie Yong-jun, Ma Xiao-dong, et al.. Near-field electromagnetic scattering characteristics of dielectric targets in the terahertz regime[J]. Journal of Electronics & Information Technology, 2015, 37(4): 1002-1007. DOI:10.11999/JEIT140807
Jiang Yue-song, Nie Meng-yao, Zhang Chong-hui, et al.. Terahertz scattering property for the coated object of rough surface[J]. Acta Physica Sinica, 2015, 64(2): 94-100. DOI:10.7498/aps.64.024101
[11]
Mandelbrot B B. The Fractal Geometry of Nature[M]. New York: Macmillan, 1983.
[12]
Michopoulos J G, Young M, and Iliopoulos A. A multiphysics theory for the static contact of deformable conductors with fractal rough surfaces[J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1597-1610. DOI:10.1109/TPS.2015.2416980
[13]
Iodice A, Natale A, and Riccio D. Kirchhoff scattering from fractal and classical rough surfaces: Physical interpretation[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(4): 2156-2163. DOI:10.1109/TAP.2012.2236531
Li Chang-ze, Tong Chuang-ming, Wang Tong, et al.. Analysis of teraherta wave scattering characteristics of unstable rough surface target[J]. High Power Laser and Particle Beams, 2016, 28(4): 043101. DOI:10.11972/j.issn.1001-9014.2016.02.020
[15]
Yin H C, Huang P K, Liu X G, et al.. PO solution for scattering by the complex object coated with anisotropic materials[J]. Journal of Systems Engineering and Electronics, 2003, 14(2): 1-7.
[16]
Li X, Xie Y, and Yang R. High-frequency method for scattering from coated targets with electrically large size in half space[J]. IET Microwaves, Antennas & Propagation, 2009, 3(2): 181-186.