A Broadband Quasi-optical System for Measuring the Dielectric Properties in the Terahertz Band
Liu Xiaoming①,* Yu Junsheng② Chen Xiaodong③ Zhou Jun④ Gan Lu① Zhang Chijian①
①(Laboratory of Millimetre Wave and Terahertz Technologies, College of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China) ②(School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China) ③(School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK) ④(School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China)
Abstract:To fulfill the requirements of the dielectric property measurement in the terahertz band, herein, a broadband quasi-optical system was designed and verified utilizing a planar scanning system. Additionally, the method of retrieving the dielectric parameters was discussed. Our experimental findings indicated that the measurement results were in good agreement with the theoretical results. Boron silicon, and deionized water were used for verifying the measurement, and the permittivity was obtained using a numerical method. We found that the dielectric properties were in good agreement with the typical values. This indicated that the proposed quasi-optical method effectively characterized the permittivity.
刘小明, 俞俊生, 陈晓东, 周 俊, 甘 露, 张持建. 针对太赫兹波段介电参数测量的宽带准光系统[J]. 雷达学报, 2018, 7(1): 56-66.
Liu Xiaoming, Yu Junsheng, Chen Xiaodong, Zhou Jun, Gan Lu, Zhang Chijian. A Broadband Quasi-optical System for Measuring the Dielectric Properties in the Terahertz Band. JOURNAL OF RADARS, 2018, 7(1): 56-66.
Liu Xiao-ming. Dielectric and Measurement Techniques[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2015: 1-16.
[2]
Janssen M A, Paganelli F, Lorenz R D, et al.. Dielectric properties of titan's surface using the Cassini RADAR radiometer[J]. Bulletin of the American Astronomical Society, 2006, 38(9): 586.
[3]
Zhang L B, Zhou P H, Zhang H B, et al.. A broadband radar absorber based on perforated magnetic polymer composites embedded with FSS[J]. IEEE Transactions on Magnetics, 2014, 50(5): 4004305, DOI: 10.1109/TMAG.2013.2293129. DOI:10.1109/TMAG.2013.2293129
Chen Quan, Zeng Jiang-yuan, Li Zhen, et al.. Relationship model of soil moisture and dielectric constant monitored with remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(12): 171-175, DOI: 10.3969/j.issn.1002-6819.2012.12.028. DOI:10.3969/j.issn.1002-6819.2012.12.028
Lian Yi, Chen Shengbo, Meng Zhiguo, et al.. Dielectric constant of Lunar soil derived from Chang'E-2 passive microwave radiometer measurements[J]. Earth Science—Journal of China University of Geosciences, 2014, 39(11): 1644-1650, DOI: 10.3799/dqkx.2014.158. DOI:10.3799/dqkx.2014.158
Yang Yang and Jing Lei. Impact of the metal permittivity on radar target scattering cross section[J]. Laser & Infrared, 2013, 43(2): 155-158, DOI: 10.3969/j.issn.1001-5078.2013.02.008. DOI:10.3969/j.issn.1001-5078.2013.02.008
Pan Shun-kang, Lv Shan-wei, Wang Wei, et al.. Effects of dielectric parameters on electromagnetic scattering of absorber[J]. Journal of Guilin University of Electronic Technology, 2007, 27(3): 171-174. DOI: 10.3969/j.issn.1673-808X.2007.03.001
[8]
ASTM. ASTM D150-2011 Standard test methods for AC loss characteristics and permittivity (dielectric constant) of solid electrical insulation[S]. ASTM, 2011.
[9]
Baker-Jarvis J, Vanzura E J, and Kissick W A. Improved technique for determining complex permittivity with the transmission/reflection method[J]. IEEE Transactions on Microwave Theory and Techniques, 1990, 38(8): 1096-1103, DOI: 10.1109/22.57336. DOI:10.1109/22.57336
[10]
Stuchly M A, Athey T W, Samaras G M, et al.. Measurement of radio frequency permittivity of biological tissues with an open-ended coaxial line: Part Ⅱ—Experimental results[J]. IEEE Transactions on Microwave Theory and Techniques, 1982, 30(1): 87-92, DOI: 10.1109/TMTT.1982.1131022. DOI:10.1109/TMTT.1982.1131022
[11]
Komiyama B, Kiyokawa M, and Matsui T. Open resonator for precision dielectric measurements in the 100 GHz band[J]. IEEE Transactions on Microwave Theory and Techniques, 1991, 39(10): 1792-1796, DOI: 10.1109/22.88556. DOI:10.1109/22.88556
[12]
Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928, DOI: 10.1109/22.989974. DOI:10.1109/22.989974
Yu Jun-sheng and Chen Xiao-dong. Millimeter Wave and Sub-millimeter Wave Quasi-optical Technologies[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2010: 1-10.
[15]
Liu X M, Chen H J, Yang B, et al.. Dielectric property measurement of gold nanoparticle dispersions in the millimeter wave range[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34(2): 140-151, DOI: 10.1007/s10762-013-9957-7. DOI:10.1007/s10762-013-9957-7
[16]
Goldsmith P F. Quasioptical Systems: Gaussian Beam Quasioptical Propogation and Applications[M]. New York: IEEE Press, 1998: 1-50.
[17]
Soares P A G, Pinho P, and Wuensche C A. High performance corrugated horn antennas for CosmoGal satellite[J]. Procedia Technology, 2014, 17: 667-673, DOI: 10.1016/j.protcy.2014.10.198. DOI:10.1016/j.protcy.2014.10.198
[18]
Olver A D, Clarricoats P J B, Kishk A A, et al.. Microwave Horns and Feeds[M]. New York: IEEE Press, 1994: 229-315.
[19]
Ade P A, Wylde R J, and Zhang J. Ultra-Gaussian Horns for ClOVER—A B-Mode CMB experiment[C]. Proceedings of the 20th International Symposium on Space Terahertz Technology, Charlottesville, USA, 2009: 128-137.
[20]
Granet C and James G L. Design of corrugated horns: A primer[J]. IEEE Antennas and Propagation Magazine, 2005, 47(2): 76-84, DOI: 10.1109/MAP.2005.1487785. DOI:10.1109/MAP.2005.1487785
[21]
Yang B, Wylde R J, Martin D H, et al.. Determination of the gyrotropic characteristics of hexaferrite ceramics from 75 to 600 GHz[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(12): 3587-3597, DOI: 10.1109/TMTT.2010.2086290. DOI:10.1109/TMTT.2010.2086290
[22]
Gagnon N, Shaker J, Roy L, et al.. Low-cost free-space measurement of dielectric constant at Ka band[J]. IEE Proceedings-Microwaves, Antennas and Propagation, 2004, 151(3): 271-276, DOI: 10.1049/ip-map:20040264. DOI:10.1049/ip-map:20040264]