Abstract:Echo simulation is a precondition for developing radar imaging systems, algorithms, and subsequent applications. Electromagnetic scattering modeling of the target is key to echo simulation. At terahertz (THz) frequencies, targets are usually of ultra-large electrical size that makes applying classical electromagnetic calculation methods unpractical. In contrast, the short wavelength makes the surface roughness of targets a factor that cannot be ignored, and this makes the traditional echo simulation methods based on point scattering hypothesis in applicable. Modeling the scattering characteristics of targets and efficiently generating its radar echoes in THz bands has become a problem that must be solved. In this paper, a hierarchical semi-deterministic modeling method is proposed. A full-wave algorithm of rough surfaces is used to calculate the scattered field of facets. Then, the scattered fields of all facets are transformed into the target coordinate system and coherently summed. Finally, the radar echo containing phase information can be obtained. Using small-scale rough models, our method is compared with the standard high-frequency numerical method, which verifies the effectiveness of the proposed method. Imaging results of a full-scale cone-shape target is presented, and the scattering model and echo generation problem of the full-scale convex targets with rough surfaces in THz bands are preliminary solved; this lays the foundation for future research on imaging regimes and algorithms.
Rahman A and Rahman A K. Effective testing for wafer reject minimization by terahertz analysis and sub-surface imaging[C]. Proceedings of the 25th Annual SEMI Advanced Semiconductor Manufacturing Conference, Saratoga Springs, NY, USA, 2014: 151-155.
[2]
Llombart N and Blazquez B. Refocusing a THz imaging radar: Implementation and measurements[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(3): 1529-1534. DOI:10.1109/TAP.2013.2296320
[3]
Siegel P H. Terahertz technology in biology and medicine[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(10): 2438-2447. DOI:10.1109/TMTT.2004.835916
[4]
Appleby R and Wallace H B. Standoff detection of weapons and contraband in the 100 GHz to 1 THz region[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(11): 2944-2956. DOI:10.1109/TAP.2007.908543
[5]
Dengler R J, Maiwald F, and Siegel P H. A compact 600 GHz electronically tunable vector measurement system for submillimeter wave imaging[C]. Proceedings of 2006 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 2006: 1923-1926.
[6]
Cooper K B, Dengler R J, Llombart N, et al.. Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(12): 2771-2778. DOI:10.1109/TMTT.2008.2007081
[7]
Cooper K B, Dengler R J, Llombart N, et al.. THz imaging radar for standoff personnel screening[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 169-182. DOI:10.1109/TTHZ.2011.2159556
[8]
Blazquez B, Cooper K B, and Llombart N. Time-delay multiplexing with linear arrays of THz radar transceivers[J]. IEEE Transactions on Terahertz Science and Technology, 2014, 4(2): 232-239. DOI:10.1109/TTHZ.2013.2296146
[9]
Essen H, Biegel G, Sommer R, et al.. High resolution tower-turntable ISAR with the millimetre wave radar cobra (35/94/220 GHz)[C]. Proceedings of the 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2008: 1-4.
[10]
Am Weg C, Von Spiegel W, Henneberger R, et al.. Fast active THz cameras with ranging capabilities[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30(12): 1281-1296.
[11]
Gu S M, Li C, Gao X, et al.. Terahertz aperture synthesized imaging with fan-beam scanning for personnel screening[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(12): 3877-3885. DOI:10.1109/TMTT.2012.2221738
Zhang Biao, Pi Yi-ming, and Li Jin. Terahertz inverse synthetic aperture radar near-field imaging algorithm using Green's function decomposition[J]. Journal of Signal Processing, 2014, 30(9): 993-999. DOI: 10.3969/j.issn.1003-0530.2014.09.001
[13]
Gao J K, Qin Y L, Deng B, et al.. Terahertz wide-angle imaging and analysis on plane-wave criteria based on inverse synthetic aperture techniques[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37(4): 373-393. DOI:10.1007/s10762-016-0249-x
[14]
Cheng B B, Jiang G, Wang C, et al.. Real-Time imaging with a 140 GHz inverse synthetic aperture radar[J]. IEEE Transactions on Terahertz Science and Technology, 2013, 3(5): 594-605. DOI:10.1109/TTHZ.2013.2268317
Cui Zhen-mao, Gao Jing-kun, Lu Bin, et al.. Real time 3D imaging system based on sparse MIMO array at 340 GHz[J]. Journal of Infrared and Millimeter Waves, 2017, 36(1): 102-106. DOI:10.11972/j.issn.1001-9014.2017.01.018
[16]
Gao J K, Cui Z M, Cheng B B, et al.. Fast three-dimensional image reconstruction of a standoff screening system in the terahertz regime[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(1): 38-51. DOI:10.1109/TTHZ.2017.2764383
[17]
Jagannathan A, Gatesman A J, Horgan T, et al.. Effect of periodic roughness and surface defects on the terahertz scattering behavior of cylindrical objects[C]. Proceedings of the SPIE Volume 7671, Terahertz Physics, Devices, and Systems IV: Advanced Applications in Industry and Defense, Orlando, Florida, United States, 2010, 7671: 76710E.
Wang Rui-jun, Deng Bin, Wang Hong-qiang, et al.. Scattering characteristics for cylindrical conductor woth different surface micro-structure in terahertz regime[J]. High Power Laser and Particle Beams, 2013, 25(6): 1549-1554. DOI:10.3788/HPLPB20132506.1549
Gao Jing-kun, Wang Rui-jun, Deng Bin, et al.. Characteristics of polarized imaging of a conducting cone with surface roughness at terahertz frequencies[J]. Journal of Terahertz Science and Electronic Information Technology, 2015, 13(3): 401-408. DOI:10.11805/TKYDA201503.0401
Yang Xiao-yu, Gao Jing-kun, Deng Bin, et al.. Radar imaging simulation and characteristics analysis of the fine structure at terahertz frequencies[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(2): 165-171. DOI:10.11805/TKYDA201702.0165
Yang Yang, Yao Jian-quan, Zhang Jing-shui, et al.. Terahertz scattering on rough copper surface[J]. Journal of Infrared and Millimeter Waves, 2013, 32(1): 36-39, 79. DOI:10.3724/SP.J.1010.2013.00036
Yang Yang, Liu Bing, Zhang Jing-shui, et al.. Influence of rough metal surface on the scattering properties of terahertz frequency[J]. Laser & Infrared, 2014, 44(8): 922-926. DOI:10.3969/j.issn.1001-5078.2014.08.020
Yang Yang. Scattering characteristics of THz wave on rough metal sphere target[J]. Journal of Terahertz Science and Electronic Information Technology, 2014, 12(6): 783-787. DOI:10.11805/TKYDA201406.0783
Yang Yang, Yao Jian-quan, Tang Shi-xing, et al.. Influence of the rough surface on radar target scattering cross section[J]. Laser & Infrared, 2011, 41(7): 800-803. DOI:10.3969/j.issn.1001-5078.2011.07.019
[25]
Jansen C, Priebe S, Moller C, et al.. Diffuse scattering from rough surfaces in THz communication channels[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(2): 462-472. DOI:10.1109/TTHZ.2011.2153610
[26]
Zhuo L, Tie J C, Xing J Z, et al.. Electromagnetic scattering characteristics of PEC targets in the terahertz regime[J]. IEEE Antennas and Propagation Magazine, 2009, 51(1): 39-50. DOI:10.1109/MAP.2009.4939018
Jiang Yue-song, Zhang Zhi-guo, and Hua Hou-qiang. RCS simulation of targets in THz band based on fast physical optics algorithm[J]. Acta Optica Sinica, 2014, 34(12): 1211001.
Cheng Zhi-hua, Xie Yong-jun, and Fan Jun. Fast computation of near field RCS of complex objects in terahertz band[J]. Journal of Electronics & Information Technology, 2014, 36(8): 1999-2004. DOI:10.3724/SP.J.1146.2013.01473
Hua Hou-qiang, Jiang Yue-song, Su Lin, et al.. High-frequency analysis on THz RCS of complex conductive targets in free space[J]. Infrared and Laser Engineering, 2014, 43(3): 687-693. DOI:10.3969/j.issn.1007-2276.2014.03.004
Jiang Yue-song, Nie Meng-yao, Zhang Chong-hui, et al.. Terahertz scattering property for the coated object of rough surface[J]. Acta Physica Sinica, 2015, 64(2): 024101. DOI:10.7498/aps.64.024101
Li Chang-ze, Tong Chuang-ming, Wang Tong, et al.. Analysis of terahertz wave scattering characteristics of non-uniform unstable roughness surface target[J]. Journal of Infrared and Millimeter Waves, 2016, 35(2): 234-242. DOI:10.11972/j.issn.1001-9014.2016.02.020
Guo Li-xin, Wang Rui, and Wu Zhen-sen. Basic Theory and Method of Random Rough Surface Scattering[M]. Beijing: Science Press, 2010.
[33]
Tsang L and Kong J A. Scattering of Electromagnetic Waves, Advanced Topics[M]. New York: Wiley, 2004.
[34]
Bahar E. Scattering cross sections for composite random surfaces: Full wave analysis[J]. Radio Science, 1981, 16(6): 1327-1335. DOI:10.1029/RS016i006p01327]