Research Progresses in Radar Feature Extraction, Imaging, and Recognition of Target with Micro-motions
Zhang Qun①②* Hu Jian①③ Luo Ying①② Chen Yijun④
①(Institute of Information and Navigation, Air Force Engineering University, Xi'an 710077, China) ②(Key Laboratory for Information Science of Electromagnetic Waves (Ministry of Education), Fudan University, Shanghai 200433, China) ③(Troop of No.95633, PLA, Qionglai 611531, China) ④(Information Engineering Faculty, Engineering University of Armed Police Force, Xi'an 710086, China)
Abstract:The technique of radar feature extraction, imaging, and recognition of target with micro-motions has become one of the most potential research directions in the field of radar target accurate recognition. In this paper, the concept of micro-motion is first introduced briefly. Subsequently, the achievements of echo modeling, feature extraction, imaging, and identification of micro-motion targets are summarized. Several typical frontier applications are then introduced. Finally, the future development trends of the research are discussed.
张 群, 胡 健, 罗 迎, 陈怡君. 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7(5): 531-547.
Zhang Qun, Hu Jian, Luo Ying, Chen Yijun. Research Progresses in Radar Feature Extraction, Imaging, and Recognition of Target with Micro-motions. JOURNAL OF RADARS, 2018, 7(5): 531-547.
张群, 罗迎. 雷达目标微多普勒效应[M]. 北京:国防工业出版社, 2013:1-17. Zhang Qun and Luo Ying. Micro-Doppler Effect of Radar Targets[M]. Beijing:National Defense Industry Press, 2013:1-17.
[2]
Zhang Q, Luo Y, and Chen Y A. Micro-Doppler Characteristics of Radar Targets[M]. Amsterdam:Elsevier, 2017:1-11.
[3]
Chen V C. The Micro-Doppler Effect in Radar[M]. Boston, London:Artech House, 2011:35-78.
[4]
Thayaparan T, Stankovic L, and Djurovic I. Micro-Doppler-based target detection and feature extraction in indoor and outdoor environments[J]. Journal of the Franklin Institute, 2008, 345(6):700-722. DOI:10.1016/j.jfranklin.2008.01.003.
[5]
Chen V C, Li F, Ho S S, et al. Micro-Doppler effect in radar:Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1):2-21.
[6]
Liu L H, McLernon D, Ghogho M, et al. Ballistic missile detection via micro-Doppler frequency estimation from radar return[J]. Digital Signal Processing, 2012, 22(1):87-95. DOI:10.1016/j.dsp.2011.10.009.
[7]
Chen V C. Doppler signatures of radar backscattering from objects with micro-motions[J]. IET Signal Processing, 2008, 2(3):291-300. DOI:10.1049/iet-spr:20070137.
[8]
马梁, 刘进, 王涛, 等. 旋转对称目标滑动型散射中心的微Doppler特性[J]. 中国科学:信息科学, 2011, 41(5):605-616. Ma Liang, Liu Jin, Wang Tao, et al.. Micro-Doppler characteristics of sliding-type scattering center on rotationally symmetric target[J]. SCIENCE CHINA Information Sciences, 2011, 54(9):1957-1967. DOI:10.1007/s11432-011-4254-3.
[9]
陈小龙, 董云龙, 李秀友, 等. 海面刚体目标微动特征建模及特性分析[J]. 雷达学报, 2015, 4(6):630-638. DOI:10.12000/JR15079. Chen Xiao-long, Dong Yun-long, Li Xiu-you, et al. Modeling of micromotion and analysis of properties of rigid marine targets[J]. Journal of Radars, 2015, 4(6):630-638. DOI:10.12000/JR15079.
[10]
黄健, 李欣, 黄晓涛, 等. 基于微多普勒特征的坦克目标参数估计与身份识别[J]. 电子与信息学报, 2010, 32(5):1050-1055. DOI:10.3724/SP.J.1146.2009.00669. Huang Jian, Li Xin, Huang Xiao-tao, et al. Micro-Doppler features based parameter estimation and identification of tank[J]. Journal of Electronics & Information Technology, 2010, 32(5):1050-1055. DOI:10.3724/SP.J.1146.2009.00669.
[11]
张翼, 程永强, 朱玉鹏, 等. 人体目标雷达回波建模[J]. 系统仿真学报, 2011, 23(3):438-445. DOI:10.16182/j.cnki.joss.2011.03.018. Zhang Yi, Cheng Yong-qiang, Zhu Yu-peng, et al. Human target radar echo modeling[J]. Journal of System Simulation, 2011, 23(3):438-445. DOI:10.16182/j.cnki.joss.2011.03.018.
[12]
Chen V C. Detection and analysis of human motion by radar[C]. Proceedings of 2008 IEEE Radar Conference, Rome, Italy, 2008:1-4.
[13]
Ghaleb A, Vignaud L, and Nicolas J M. Micro-Doppler analysis of wheels and pedestrians in ISAR imaging[J]. IET Signal Processing, 2008, 2(3):301-311. DOI:10.1049/iet-spr:20070113.
[14]
Zhang Q, Zeng Y S, He Y Q, et al.. Avian detection and identification with high-resolution radar[C]. Proceedings of 2008 IEEE Radar Conference, Rome, Italy, 2008:1-6.
[15]
Zhu F, Luo Y, Zhang Q, et al. ISAR imaging for avian species identification with frequency-stepped chirp signals[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(1):151-155. DOI:10.1109/LGRS.2009.2028902.
[16]
Bai X R, Zhou F, and Bao Z. High-resolution 3-D imaging of group rotating targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2):1066-1077. DOI:10.1109/TAES.2013.110750.
[17]
Liu Y X, Chen H Y, Li X, et al.. Radar micro-motion target resolution[C]. Proceedings of 2006 CIE International Conference on Radar, Shanghai, China, 2006:1411-1414.
[18]
Zhao M M, Zhang Q, Luo Y, et al. Micromotion feature extraction and distinguishing of space group targets[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(2):174-178. DOI:10.1109/LGRS.2016.2633426.
[19]
Fioranelli F, Ritchie M, and Griffiths H. Multistatic human micro-Doppler classification of armed/unarmed personnel[J]. IET Radar, Sonar & Navigation, 2015, 9(7):857-865. DOI:10.1049/iet-rsn.2014.0360.
[20]
罗迎, 张群, 朱仁飞, 等. 多载频MIMO雷达中目标旋转部件三维微动特征提取方法[J]. 电子学报, 2011, 39(9):1975-1981. Luo Ying, Zhang Qun, Zhu Ren-fei, et al. Three-dimensional micro-motion feature extraction of target with rotating parts in multi-carrier MIMO radar[J]. Acta Electronica Sinica, 2011, 39(9):1975-1981.
[21]
Luo Y, Zhang Q, Qiu C W, et al. Three-dimensional micromotion signature extraction of rotating targets in OFDM-LFM MIMO radar[J]. Progress in Electromagnetics Research, 2013, 140:733-759. DOI:10.2528/PIER13042202.
[22]
Luo Y, Zhang Q, Yuan N, et al. Three-dimensional precession feature extraction of space targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2):1313-1329. DOI:10.1109/TAES.2014.110545.
[23]
Zhang Q, Yeo T S, Tan H S, et al. Imaging of a moving target with rotating parts based on the Hough transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):291-299. DOI:10.1109/TGRS.2007.907105.
[24]
Xing M, Wu R, and Bao Z. High resolution ISAR imaging of high speed moving targets[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(2):58-67. DOI:10.1049/ip-rsn:20045084.
[25]
Bai X R, Zhou F, Xing M D, et al. High resolution ISAR imaging of targets with rotating parts[J]. IEEE Transactions on Aerospace and Electronic System, 2011, 47(4):2530-2543. DOI:10.1109/TAES.2011.6034649.
[26]
Peng B, Wei X Z, Deng B, et al. A Sinusoidal frequency modulation Fourier transform for radar-based vehicle vibration estimation[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(9):2188-2199. DOI:10.1109/TIM.2014.2308031.
[27]
He Q F, Zhang Q, Luo Y, et al. Sinusoidal frequency modulation Fourier-Bessel series for multicomponent SFM signal estimation and separation[J]. Mathematical Problems in Engineering, 2017, 2017:5852171.
[28]
Suresh P, Thayaparan T, Obulesu T, et al. Extracting micro-Doppler radar signatures from rotating targets using Fourier-Bessel transform and time-frequency analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6):3204-3210. DOI:10.1109/TGRS.2013.2271706.
[29]
Suresh P, Thayaparan T, and Venkataramaniah K. Fourier-Bessel transform and time-frequency-based approach for detecting manoeuvring air target in sea-clutter[J]. IET Radar, Sonar & Navigation, 2015, 9(5):481-491.
[30]
冯德军, 陈志杰, 王雪松, 等. 基于一维距离像的导弹目标运动特征提取方法[J]. 国防科技大学学报, 2005, 27(6):43-47. DOI:10.3969/j.issn.1001-2486.2005.06.010. Feng De-jun, Chen Zhi-jie, Wang Xue-song, et al. A method for extracting moving feature of ballistic missile targets from high resolution range profiles[J]. Journal of National University of Defense Technology, 2005, 27(6):43-47. DOI:10.3969/j.issn.1001-2486.2005.06.010.
[31]
马梁, 王涛, 冯德军, 等. 旋转目标距离像长度特性及微运动特征提取[J]. 电子学报, 2008, 36(12):2273-2279. DOI:10.3321/j.issn:0372-2112.2008.12.001. Ma Liang, Wang Tao, Feng De-jun, et al. The characteristic of range profile and micro-motion feature extraction for rotary target[J]. Acta Electronica Sinica, 2008, 36(12):2273-2279. DOI:10.3321/j.issn:0372-2112.2008.12.001.
[32]
雷腾, 刘进忙, 余付平, 等. 基于时间-距离像的弹道目标进动特征提取新方法[J]. 信号处理, 2012, 28(1):73-79. DOI:10.3969/j.issn.1003-0530.2012.01.011. Lei Teng, Liu Jin-mang, Yu Fu-ping, et al. A new procession signature extraction method of ballistic target based on range-profile[J]. Signal Processing, 2012, 28(1):73-79. DOI:10.3969/j.issn.1003-0530.2012.01.011.
[33]
毕莉, 赵锋, 高勋章, 等. 基于一维像序列的进动目标尺寸估计研究[J]. 电子与信息学报, 2010, 32(8):1825-1830. DOI:10.3724/SP.J.1146.2009.00835. Bi Li, Zhao Feng, Gao Xun-zhang, et al. Study on precessional target's dimension estimation based on HRRPs[J]. Journal of Electronics & Information Technology, 2010, 32(8):1825-1830. DOI:10.3724/SP.J.1146.2009.00835.
[34]
Rihaczek A W and Hershkowitz S J. Theory and Practice of Radar Target Identification[M]. Boston, London:Artech House, 2000.
[35]
Ai X F, Zou X H, Li Y Z, et al. Bistatic scattering centres of cone-shaped targets and target length estimation[J]. SCIENCE CHINA Information Sciences, 2012, 55(12):2888-2898. DOI:10.1007/s11432-012-4749-6.
[36]
艾小锋, 邹小海, 李浩智, 等. T/R-R双基地雷达进动目标参数估计与ISAR成像[J]. 电子学报, 2012, 40(6):1148-1153. DOI:10.3969/j.issn.0372-2112.2012.06.013. Ai Xiao-feng, Zou Xiao-hai, Li Hao-zhi, et al. Parameter estimation and ISAR imaging of precession targets using T/R-R bistatic radars[J]. Acta Electronica Sinica, 2012, 40(6):1148-1153. DOI:10.3969/j.issn.0372-2112.2012.06.013.
[37]
金光虎, 高勋章, 黎湘, 等. 基于ISAR像序列的弹道目标进动特征提取[J]. 电子学报, 2010, 38(6):1233-1238. Jin Guang-hu, Gao Xun-zhang, Li Xiang, et al. Precession feature extraction of ballistic targets based on dynamic ISAR image sequence[J]. Acta Electronica Sinica, 2010, 38(6):1233-1238.
[38]
陈蓉, 冯存前, 贺思三, 等. 采用ISAR像估计弹道目标微动特征的方法[J]. 系统工程与电子技术, 2017, 39(7):1500-1505. DOI:10.3969/j.issn.1001-506X.2017.07.11. Chen Rong, Feng Cun-qian, He Si-san, et al. Micro-motion features estimation method using ISAR images for ballistic targets[J]. Systems Engineering and Electronics, 2017, 39(7):1500-1505. DOI:10.3969/j.issn.1001-506X.2017.07.11.
[39]
Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. DOI:10.1109/TIT.2006.871582.
[40]
李康乐. 雷达目标微动特征提取与估计技术研究[D].[博士论文], 国防科学技术大学, 2010. Li Kang-le. Research on feature extraction and parameters estimation for radar targets with micro-motions[D].[Ph.D. dissertation], National University of Defense Technology, 2010.
[41]
Whitelonis N and Ling H. Radar signature analysis using a joint time-frequency distribution based on compressed sensing[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(2):755-763. DOI:10.1109/TAP.2013.2291893.
[42]
Deprem Z and Çetín A. Cross-term-free time-frequency distribution reconstruction via lifted projections[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1):479-491. DOI:10.1109/TAES.2014.140080.
[43]
Liu H C, Jiu B, Liu H W, et al. A novel ISAR imaging algorithm for micromotion targets based on multiple sparse bayesian learning[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10):1772-1776. DOI:10.1109/LGRS.2014.2308536.
[44]
Luo Y, Zhang Q, Qiu C W, et al. Micro-Doppler feature extraction for wideband imaging radar based on complex image orthogonal matching pursuit decomposition[J]. IET Radar, Sonar & Navigation, 2013, 7(8):914-924.
[45]
张栋, 冯存前, 贺思三, 等. 组网雷达弹道目标三维进动特征提取[J]. 西安电子科技大学学报(自然科学版), 2015, 42(2):146-151. DOI:10.3969/j.issn.1001-2400.2015.02.024. Zhang Dong, Feng Cun-qian, He Si-san, et al. Extraction of three-dimensional precession features of ballistic targets in netted radar[J]. Journal of Xidian University, 2015, 42(2):146-151. DOI:10.3969/j.issn.1001-2400.2015.02.024.
[46]
赵双, 鲁卫红, 冯存前, 等. 基于窄带雷达网的弹道目标三维进动特征提取[J]. 雷达学报, 2017, 6(1):98-105. DOI:10.12000/JR15129. Zhao Shuang, Lu Wei-hong, Feng Cun-qian, et al. Three-dimensional precession feature extraction of ballistic targets based on narrowband radar network[J]. Journal of Radars, 2017, 6(1):98-105. DOI:10.12000/JR15129.
[47]
Hu J, Zhang Q, Luo Y, et al. Three-dimensional interferometric imaging and precession feature extraction of space targets in wideband radar[J]. Journal of Applied Remote Sensing, 2018, 12(1):016029.
[48]
黎湘, 高勋章, 刘永祥. 复杂运动目标ISAR成像技术进展与展望[J]. 数据采集与处理, 2014, 29(4):508-515. DOI:10.3969/j.issn.1004-9037.2014.04.004. Li Xiang, Gao Xun-zhang, and Liu Yong-xiang. Research advances in ISAR imagery of complex motion target[J]. Journal of Data Acquisition and Processing, 2014, 29(4):508-515. DOI:10.3969/j.issn.1004-9037.2014.04.004.
[49]
Sato T. Shape estimation of space debris using single-range Doppler interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2):1000-1005. DOI:10.1109/36.752218.
[50]
Wang Q, Xing M D, Lu G Y, et al. Single range matching filtering for space debris radar imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(4):576-580. DOI:10.1109/LGRS.2007.903059.
[51]
张磊, 李亚超, 刘燕, 等. 基于时频特性的窄带高速自旋目标运动估计及成像算法[J]. 中国科学:信息科学, 2010, 40(6):863-875. Zhang Lei, Li Ya-chao, Liu Yan, et al.. Time-frequency characteristics based motion estimation and imaging for high speed spinning targets via narrowband waveforms[J]. SCIENTIA SINICA Information Sciences, 2010, 53(8):1628-1640. DOI:10.1007/s11432-010-4027-4.
[52]
Ding X F, Fan M M, Wei X Z, et al. Narrowband imaging method for spatial precession cone-shaped targets[J]. SCIENCE CHINA Technological Sciences, 2010, 53(4):942-949. DOI:10.1007/s11431-010-0112-6.
[53]
丁小峰, 姚辉伟, 范梅梅, 等. 基于层析投影算法的空间旋转目标窄带雷达成像[J]. 信号处理, 2010, 26(5):648-653. DOI:10.3969/j.issn.1003-0530.2010.05.002. Ding Xiao-feng, Yao Hui-wei, Fan Mei-mei, et al. Narrowband imaging for spatial rotating targets based on tomography algorithm[J]. Signal Processing, 2010, 26(5):648-653. DOI:10.3969/j.issn.1003-0530.2010.05.002.
[54]
雷腾, 刘进忙, 李松, 等. 基于MP稀疏分解的弹道中段目标微动ISAR成像新方法[J]. 系统工程与电子技术, 2011, 33(12):2649-2654. DOI:10.3969/j.issn.1001-506X.2011.12.15. Lei Teng, Liu Jin-mang, Li Song, et al. A novel ISAR imaging method of ballistic midcourse targets based on MP sparse decomposition[J]. Systems Engineering and Electronics, 2011, 33(12):2649-2654. DOI:10.3969/j.issn.1001-506X.2011.12.15.
[55]
Zou F, Fu Y W, and Jiang W D. Micro-motion effect in inverse synthetic aperture radar imaging of ballistic mid-course targets[J]. Journal of Central South University, 2012, 19(6):1548-1577. DOI:10.1007/s11771-012-1175-2.
[56]
Kang W W, Zhang Y H, and Dong X. Micro-Doppler effect removal for ISAR imaging based on bivariate variational mode decomposition[J]. IET Radar, Sonar & Navigation, 2018, 12(1):74-81. DOI:10.1049/iet-rsn.2017.0104.
[57]
Yuan B, Chen Z P, and Xu S Y. Micro-Doppler analysis and separation based on complex local mean decomposition for aircraft with fast-rotating parts in ISAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2):1285-1298. DOI:10.1109/TGRS.2013.2249588.
[58]
Stankovic L, Orovic I, Stankovic S, et al. Compressive sensing based separation of nonstationary and stationary signals overlapping in time-frequency[J]. IEEE Transactions on Signal Processing, 2013, 61(18):4562-4572. DOI:10.1109/TSP.2013.2271752.
[59]
Wang Q, Xing M D, Lu G Y, et al. High-resolution three-dimensional radar imaging for rapidly spinning targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):22-30. DOI:10.1109/TGRS.2007.909086.
[60]
Xing M D, Wang Q, Wang G Y, et al. A matched-filter-bank-based 3-D imaging algorithm for rapidly spinning targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7):2106-2113. DOI:10.1109/TGRS.2008.2010499.
[61]
Zhang L, Xing M D, Qiu C W, et al. Two-dimensional spectrum matched filter banks for high-speed spinning-target three-dimensional ISAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3):368-372. DOI:10.1109/LGRS.2009.2013487.
[62]
Bai X R, Xing M D, Zhou F, et al. High-resolution three-dimensional imaging of spinning space debris[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7):2352-2362. DOI:10.1109/TGRS.2008.2010854.
[63]
Bai X R and Bao Z. Imaging of rotation-symmetric space targets based on electromagnetic modeling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3):1680-1689. DOI:10.1109/TAES.2014.120772.
[64]
Bai X R and Bao Z. High-resolution 3D imaging of precession cone-shaped targets[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(8):4209-4219. DOI:10.1109/TAP.2014.2329004.
[65]
Bai X R, Zhou F, and Bao Z. High-resolution three-dimensional imaging of space targets in micromotion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7):3428-3440. DOI:10.1109/JSTARS.2015.2431119.
[66]
Ai X F, Huang Y, Zhao F, et al. Imaging of spinning targets via narrow-band T/R-R bistatic radars[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2):362-366. DOI:10.1109/LGRS.2012.2205893.
[67]
梁必帅, 张群, 娄昊, 等. 基于微动特征关联的空间非对称自旋目标雷达三维成像方法[J]. 电子与信息学报, 2014, 36(6):1381-1388. DOI:10.3724/SP.J.1146.2013.01147. Liang Bi-shuai, Zhang Qun, Lou Hao, et al. A method of three-dimensional imaging based on micro-motion feature association for spatial asymmetrical spinning targets[J]. Journal of Electronics & Information Technology, 2014, 36(6):1381-1388. DOI:10.3724/SP.J.1146.2013.01147.
[68]
梁必帅, 张群, 娄昊, 等. 基于微动特征关联的空间自旋目标宽带雷达三维成像[J]. 电子与信息学报, 2013, 35(9):2133-2140. DOI:10.3724/SP.J.1146.2012.01537. Liang Bi-shuai, Zhang Qun, Lou Hao, et al. Three-dimensional broadband radar imaging of space spinning targets based on micro-motion parameter correlation[J]. Journal of Electronics & Information Technology, 2013, 35(9):2133-2140. DOI:10.3724/SP.J.1146.2012.01537.
[69]
Sun Y X, Luo Y, Zhang Q, et al. Time-varying three-dimensional interferometric imaging for space rotating targets with stepped-frequency chirp signal[J]. IET Radar, Sonar & Navigation, 2017, 11(9):1397-1405. DOI:10.1049/iet-rsn.2017.0009.
[70]
Gschwendtner A B and Keicher W E. Development of coherent laser radar at Lincoln Laboratory[J]. Lincoln Laboratory Journal, 2000, 12(2):383-396.
[71]
Lei J J and Lu C. Target classification based on micro-Doppler signatures[C]. Proceedings of 2005 IEEE International Radar Conference, Arlington, VA, USA, 2005:179-183.
[72]
Nanzer J A and Rogers R L. Bayesian classification of humans and vehicles using micro-Doppler signals from a Scanning-beam radar[J]. IEEE Microwave and Wireless Components Letters, 2009, 19(5):338-340. DOI:10.1109/LMWC.2009.2017620.
[73]
Lin Y and Le Kernec J. Performance analysis of classification algorithms for activity recognition using micro-Doppler feature[C]. Proceedings of the 13th International Conference on Computational Intelligence and Security, Hong Kong, China, 2017:480-483.
[74]
Smith G E, Woodbridge K, and Baker C J. Template based micro-Doppler signature classification[C]. 2006 European Radar Conference, Manchester, UK, 2006:158-161.
[75]
李开明, 张群, 罗迎, 等. 地面车辆目标识别研究综述[J]. 电子学报, 2014, 42(3):538-546. DOI:10.3969/j.issn.0372-2112.2014.03.018. Li Kai-ming, Zhang Qun, Luo Ying, et al. Review of ground vehicles recognition[J]. Acta Electronica Sinica, 2014, 42(3):538-546. DOI:10.3969/j.issn.0372-2112.2014.03.018.
[76]
王晓丹, 王积勤. 雷达目标识别技术综述[J]. 现代雷达, 2003, 25(5):22-26. DOI:10.3969/j.issn.1004-7859.2003.05.007. Wang Xiao-dan and Wang Ji-qin. A survey of radar target recognition technique[J]. Modern Radar, 2003, 25(5):22-26. DOI:10.3969/j.issn.1004-7859.2003.05.007.
[77]
Van Eeden W D, De Villiers J P, Berndt R J, et al. Micro-Doppler radar classification of humans and animals in an operational environment[J]. Expert Systems with Applications, 2018, 102:1-11. DOI:10.1016/j.eswa.2018.02.019.
[78]
Bilik I and Khomchuk P. Minimum divergence approaches for robust classification of ground moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1):581-603. DOI:10.1109/TAES.2012.6129657.
[79]
Graley J, Murray T S, Mendat D R, et al.. Action recognition using micro-Doppler signatures and a recurrent neural network[C]. Proceedings of the 51st Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 2017:1-5.
[80]
Lan J H, Zhang Z H, and Xiong S. Acoustic detection for vehicle targets and recognition by data fusion[C]. Proceedings of 2005 IEEE Instrumentation and Measurement Technology Conference Proceedings, Ottawa, Canada, 2005:551-553.
[81]
Yang L, Li G, Ritchie M, et al.. Gait classification based on micro-Doppler features[C]. Proceedings of 2016 CIE International Conference on Radar, Guangzhou, China, 2016:1-4.
[82]
Zabalza J, Clemente C, Di Caterina G, et al. Robust PCA micro-Doppler classification using SVM on embedded systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3):2304-2310. DOI:10.1109/TAES.2014.130082.
[83]
Vishwakarma S and Ram S S. Dictionary learning for classification of indoor micro-Doppler signatures across multiple carriers[C]. Proceedings of 2017 IEEE Radar Conference, Seattle, WA, USA, 2017:0992-0997. DOI:10.1109/RADAR.2017.7944348.
[84]
方菲菲, 余稳. 基于PCA-LDA-SVM的多普勒雷达车型识别算法[J]. 数据采集与处理, 2012, 27(1):111-116. DOI:10.3969/j.issn.1004-9037.2012.01.019. Fang Fei-fei and Yu Wen. Vehicle recognition algorithm with doppler radar based on PCA-LDA-SVM[J]. Journal of Data Acquisition & Processing, 2012, 27(1):111-116. DOI:10.3969/j.issn.1004-9037.2012.01.019.
[85]
Javier R J and Kim Y. Application of linear predictive coding for human activity classification based on micro-Doppler signatures[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10):1831-1834. DOI:10.1109/LGRS.2014.2311819.
[86]
Smith G E, Woodbridge K, and Baker C J. Radar micro-Doppler signature classification using dynamic time warping[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3):1078-1096. DOI:10.1109/TAES.2010.5545175.
[87]
冯存前, 李靖卿, 贺思三, 等. 组网雷达中弹道目标微动特征提取与识别综述[J]. 雷达学报, 2015, 4(6):609-620. DOI:10.12000/JR15084. Feng Cun-qian, Li Jing-qing, He Si-san, et al. Micro-Doppler feature extraction and recognition based on netted radar for ballistic targets[J]. Journal of Radars, 2015, 4(6):609-620. DOI:10.12000/JR15084.
[88]
Chen X L, Guan J, Li X Y, et al. Effective coherent integration method for marine target with micromotion via phase differentiation and radon-Lv's distribution[J]. IET Radar, Sonar & Navigation, 2015, 9(9):1284-1295. DOI:10.1049/iet-rsn.2015.0100.
[89]
Chen X L, Guan J, Bao Z H, et al. Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional Fourier transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2):1002-1018. DOI:10.1109/TGRS.2013.2246574.
[90]
孙挺, 程旭. 一种基于全极化回波的微多普勒增强算法[J]. 电子学报, 2017, 45(9):2071-2076. DOI:10.3969/j.issn.0372-2112.2017.09.003. Sun Ting and Cheng Xu. A novel method of micro-Doppler signature enhancement based on full polarization echoes[J]. Acta Electronica Sinica, 2017, 45(9):2071-2076. DOI:10.3969/j.issn.0372-2112.2017.09.003.
[91]
Damarla T, Bradley M, Mehmood A, et al. Classification of animals and people ultrasonic signatures[J]. IEEE Sensors Journal, 2013, 13(5):1464-1472. DOI:10.1109/JSEN.2012.2236550.
[92]
Shi X R, Zhou F, Liu L, et al. Textural feature extraction based on time-frequency spectrograms of humans and vehicles[J]. IET Radar, Sonar & Navigation, 2015, 9(9):1251-1259. DOI:10.1049/iet-rsn.2014.0432.
[93]
Amin M G, Ahmad F, Zhang Y D, et al. Human gait recognition with cane assistive device using quadratic time-frequency distributions[J]. IET Radar, Sonar & Navigation, 2015, 9(9):1224-1230. DOI:10.1049/iet-rsn.2015.0119.
[94]
Saho K, Fujimoto M, Masugi M, et al. Gait classification of young adults, elderly non-fallers, and elderly fallers using micro-Doppler radar signals:Simulation study[J]. IEEE Sensors Journal, 2017, 17(8):2320-2321. DOI:10.1109/JSEN.2017.2678484.
[95]
Mikhelson I V, Bakhtiari S, Elmer Ⅱ T W, et al. Remote sensing of heart rate and patterns of respiration on a stationary subject using 94-GHz millimeter-wave interferometry[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(6):1671-1677. DOI:10.1109/TBME.2011.2111371.
[96]
Xu Z W, Wu Y J, and Lu X Q. Time-frequency analysis of terahertz radar signal for vital signs sensing based on radar sensor[J]. International Journal of Sensor Networks, 2013, 13(4):241-253. DOI:10.1504/IJSNET.2013.055587.
[97]
Chen V C. Radar micro-Doppler signatures-principle and applications[J]. Radar Science and Technology, 2012, 10(3):231-240.
[98]
王雪松. 雷达极化技术研究现状与展望[J]. 雷达学报, 2016, 5(2):119-131. DOI:10.12000/JR16039. Wang Xuesong. Status and prospects of radar polarimetry techniques[J]. Journal of Radars, 2016, 5(2):119-131. DOI:10.12000/JR16039.
[99]
Petkie D T, Bryan E, Benton C, et al.. Remote respiration and heart rate monitoring with millimeter-wave/terahertz radars[C]. Proceedings of SPIE 7117, Millimetre Wave and Terahertz Sensors and Technology, Cardiff, Wales, United Kingdom, 2008, 7117:71170I. DOI:10.1117/12.800356.
[100]
杨琪, 邓彬, 王宏强, 等. 太赫兹雷达目标微动特征提取研究进展[J]. 雷达学报, 2018, 7(1):22-45. DOI:10.12000/JR17087. Yang Qi, Deng Bin, Wang Hongqiang, et al. Advancements in research on micro-motion feature extraction in the terahertz region[J]. Journal of Radars, 2018, 7(1):22-45. DOI:10.12000/JR17087.
[101]
Mehmood A, Sabatier J M, Bradley M, et al. Extraction of the velocity of walking human's body segments using ultrasonic Doppler[J]. The Journal of the Acoustical Society of America, 2010, 128(5):EL316. DOI:10.1121/1.3501115.
[102]
Lecun Y, Bengio Y, and Hinton G. Deep learning[J]. Nature, 2015, 521(7553):436-444. DOI:10.1038/nature14539.