JOURNAL OF RADARS
 Home | About Journal | Ethics Statement | Editorial Board | Reviewers | Instruction | Subscriptions | Contacts Us | Chinese
JOURNAL OF RADARS  2014, Vol. 3 Issue (4): 383-395    DOI: 10.3724/SP.J.1300.2014.14105
Reviews Current Issue | Next Issue | Archive | Adv Search |
Current Developments of Sparse Microwave Imaging
Wu Yi-rong①② Hong Wen①② Zhang Bing-chen①②Jiang Cheng-long①②③ Zhang Zhe①②③ Zhao Yao①②
(Science and Technology on Microwave Imaging Laboratory, Beijing 100190, China)
(Institute of Electronics, Chinese Academy of Science, Beijing 100190, China)
(University of Chinese Academy of Science, Beijing 100190, China)
 Download: PDF (10215 KB)   [HTML]( )   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract 

The sparse microwave imaging combines the sparse signal processing theory with radar imaging to obtain new theory, new system, and new methodology of microwave imaging. In this paper, a brief review of fundamental issues in applying sparse signal processing to radar imaging is provided, including sparse representation, measurement matrix construction, unambiguity reconstruction, and so on. The developments of sparse signal processing in microwave imaging are discussed, and the initial airborne experiments on the prototype Synthetic Aperture Radar (SAR) framework with sparse constraints are introduced. The results demonstrate the feasibility and effectiveness of the principle and methodology of sparse microwave imaging. Besides, we also provide an overview of sparse signal processing in various radar applications, including  Tomographic SAR (TomoSAR), Inverse SAR (ISAR), Ground Penetrating Radar (GPR) as well.

Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Wu Yi-rong
Hong Wen
Zhang Bing-chen
Jiang Cheng-long
Zhang Zhe
Zhao Yao
Key wordsSparse microwave imaging   Synthetic Aperture Radar (SAR)   Compressive Sensing (CS)   Airborne experiments     
Received: 2014-08-07; Published: 2014-08-13
Cite this article:   
Wu Yi-rong,Hong Wen,Zhang Bing-chen et al. Current Developments of Sparse Microwave Imaging[J]. JOURNAL OF RADARS, 2014, 3(4): 383-395.
 
No references of article
[1] Liu Xiangyang, Yang Jungang, Meng Jin, Zhang Xiao, Niu Dezhi. Sparse Three-dimensional Imaging Based on Hough Transform for Forward-looking Array SAR in Low SNR[J]. JOURNAL OF RADARS, 2017, 6(3): 316-323.
[2] Ding Baiyuan, Wen Gongjian, Yu Liansheng, Ma Conghui. Matching of Attributed Scattering Center and Its Application to Synthetic Aperture Radar Automatic Target Recognition[J]. JOURNAL OF RADARS, 2017, 6(2): 157-166.
[3] Zeng Lina, Zhou Deyun, Li Xiaoyang, Zhang Kun. Novel SAR Target Detection Algorithm Using Free Training[J]. JOURNAL OF RADARS, 2017, 6(2): 177-185.
[4] Hu Dingsheng, Qiu Xiaolan, Lei Bin, Xu Feng. Analysis of Crosstalk Impact on the Cloude-decomposition-based Scattering Characteristic[J]. JOURNAL OF RADARS, 2017, 6(2): 221-228.
[5] Xu Feng, Wang Haipeng, Jin Yaqiu. Deep Learning as Applied in SAR Target Recognition and Terrain Classification[J]. JOURNAL OF RADARS, 2017, 6(2): 136-148.
[6] Wang Siyu, Gao Xin, Sun Hao, Zheng Xinwei, Sun Xian. An Aircraft Detection Method Based on Convolutional Neural Networks in High-Resolution SAR Images[J]. JOURNAL OF RADARS, 2017, 6(2): 195-203.
[7] Zhao Junxiang, Liang Xingdong, Li Yanlei. Change Detection in SAR CCD Based on the Likelihood Change Statistics[J]. JOURNAL OF RADARS, 2017, 6(2): 186-194.
[8] Hu Jingqiu, Liu Falin, Zhou Chongbin, Li Bo, Wang Dongjin. CS-SAR Imaging Method Based on Inverse Omega-K Algorithm(in English)[J]. JOURNAL OF RADARS, 2017, 6(1): 25-33.
[9] Gu Wenkun, Wang Dangwei, Ma Xiaoyan. Distributed MIMO-ISAR Sub-image Fusion Method[J]. JOURNAL OF RADARS, 2017, 6(1): 90-97.
[10] Zhou Yejian, Zhang Lei, Wang Hongxian, Xing Mengdao. Performance Analysis on ISAR Imaging of Space Targets[J]. JOURNAL OF RADARS, 2017, 6(1): 17-24.
[11] Zhang Jingjing, Hong Wen, Yin Qiang. Robust Distributed-target-based Calibration Method for Polarimetric SAR Using Spherically Truncated Covariance Matrix[J]. JOURNAL OF RADARS, 2016, 5(6): 701-710.
[12] Sun Xun, Huang Pingping, Tu Shangtan, Yang Xiangli. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning[J]. JOURNAL OF RADARS, 2016, 5(6): 692-700.
[13] Hong Wen. Hybrid-polarity Architecture Based Polarimetric SAR: Principles and Applications (in Chinese and in English)[J]. JOURNAL OF RADARS, 2016, 5(6): 559-595.
[14] Chen Ying, Zhong Fei, Guo Shuxu. Blind Compressed Sensing Parameter Estimation of Non-cooperative Frequency Hopping Signal[J]. JOURNAL OF RADARS, 2016, 5(5): 531-537.
[15] Zhao Tuan, Deng Yunkai, Wang Yu, Li Ning, Wang Xiangyu. Processing Sliding Mosaic Mode Data with Modified Full-Aperture Imaging Algorithm Integrating Scalloping Correction[J]. JOURNAL OF RADARS, 2016, 5(5): 548-557.
 

Copyright © 2011 JOURNAL OF RADARS
Support by Beijing Magtech Co.Ltd   E-mail:support@magtech.com.cn